根据李沐老师的课做的记录。
构建文本数据集
文本数据集可以将其看作一串单词序列或者字符序列。
构建时一般有以下几个步骤。
- 文本清洗(比如去除乱码和标点符号、当然在很多时候并不会去掉标点符号)。
- 将文本存入内存。
- 将文本拆分成词或者字符。
- 建立词汇表和对应索引。
文本清洗和读取
这里使用课上提到的《time machine》
百度网盘链接
提取码:pypt
-
读取文本
只保留字母并统一成小写。
text_path = './timemachine.txt'
def read_time_machine():
with open(text_path, 'r') as f:
lines = f.readlines()
return [re.sub(r'[^a-zA-Z]+', ' ', line).strip().lower() for line in lines]
lines = read_time_machine()
print('len=', len(lines), '\n', lines[0], '\n', lines[9])
输出如下
len= 3221
the time machine by h g wells
was expounding a recondite matter to us his grey eyes shone and
tokenize
将文本划分为词或者字符。
def tokenize(lines, token='word'):
if token == 'word':
return [line.split() for line in lines]
elif token == 'char':
return [list(line) for line in lines]
else:
print('wrong')
tokens = tokenize(lines)
print(tokens[0])
输出为
在这里插入代码片['the', 'time', 'machine', 'by', 'h', 'g', 'wells']
定义计数函数
统计每个词的出现频数。
def count_corpus(tokens):
if len(tokens) == 0:
tokens = []
elif isinstance(tokens[0], list):
tokens = [token for line in tokens for token in line]
return collections.Counter(tokens)
定义vocab类
用于返回id_to_token和token_to_id。
class Vocab:
def __init__(self, tokens=None, min_freq=0, reversed_token=None):
if not tokens:
tokens = []
if not reversed_token:
reversed_token = []
counter = count_corpus(tokens)
self.token_freq = sorted(counter.items(), key=lambda x: x[1], reverse=True)
self.unk, uniq_tokens = 0, ['UNK'] + reversed_token
uniq_tokens += [token for token, freq in self.token_freq if freq > min_freq and token not in uniq_tokens]
self.idx_to_token, self.token_to_idx = [], {}
for token in uniq_tokens:
self.idx_to_token.append(token)
self.token_to_idx[token] = len(self.idx_to_token) - 1
def __len__(self):
return len(self.idx_to_token)
def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)): # 判断是否为一个词语
return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens] # 如果为句子则以list形式返回
def to_tokens(self, indices): # 将id转为句子(主要用于多个id)
if not isinstance(indices, (list, tuple)): # 判断是否为一个id
return self.idx_to_token[indices]
return [self.idx_to_token[index] for index in indices] # 如果为句子则以list形式返回
tokens = tokenize(lines)
vocab = Vocab(tokens, min_freq=2)
print(vocab['time'], vocab.to_tokens([1, 2, 3, 4, 5, 6]), len(vocab))
输出为
19 ['the', 'i', 'and', 'of', 'a', 'to'] 1420
生成样本
随机抽样生成样本
import random
import torch
# 随机抽样生成批量样本
def sequence_radom_iter(corpus, batch_size, num_step):
# 随机起始
corpus = corpus[random.randint(0, num_step - 1):]
# 样例总数 -1 是因为要预测,对于最后一个x要保证有y
sequence_num = (len(corpus)-1)//num_step
init_index = list(range(0, sequence_num*num_step, num_step))
random.shuffle(init_index)
def data(pos):
return corpus[pos: pos+num_step]
num_batches = sequence_num//batch_size
for i in range(0, batch_size*num_batches, batch_size):
init_pre_batch_idex = init_index[i:i+batch_size]
X = [data(i) for i in init_pre_batch_idex]
Y = [data(i+1) for i in init_pre_batch_idex]
yield torch.tensor(X), torch.tensor(Y)
data = sequence_radom_iter(vocab.__getitem__(corpus), 3, 5)
x, y = next(data)
print(x, '\n', y)
输出:
tensor([[ 119, 0, 0, 4, 0],
[ 11, 1170, 3, 0, 368],
[ 0, 348, 563, 51, 898]])
tensor([[ 0, 0, 4, 0, 1],
[1170, 3, 0, 368, 0],
[ 348, 563, 51, 898, 95]])
按顺序生成样本
def sequence_data_seq(corpus, batch_size, num_step):
# 随机起始
corpus = corpus[random.randint(0, num_step - 1):]
# 样例总数 -1 是因为要预测,对于最后一个x要保证有y
sequence_num = (len(corpus) - 1) // batch_size * batch_size
Xs = torch.tensor(corpus[:sequence_num])
Ys = torch.tensor(corpus[1:sequence_num+1])
Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
for i in range(0, Xs.shape[1]//num_step * num_step, num_step):
X, Y = Xs[:, i: i + num_step], Ys[:, i: i + num_step]
yield X, Y
data = sequence_data_seq(vocab.__getitem__(corpus), 3, 5)
x, y = next(data)
print(x, '\n', y)
testData = list(range(100))
data = sequence_data_seq(testData, 3, 5)
x, y = next(data)
print(x, '\n', y)
输出:
tensor([[ 19, 50, 40, 0, 0],
[ 4, 1, 56, 0, 799],
[ 11, 180, 63, 6, 13]])
tensor([[ 50, 40, 0, 0, 400],
[ 1, 56, 0, 799, 4],
[180, 63, 6, 13, 9]])
tensor([[ 3, 4, 5, 6, 7],
[35, 36, 37, 38, 39],
[67, 68, 69, 70, 71]])
tensor([[ 4, 5, 6, 7, 8],
[36, 37, 38, 39, 40],
[68, 69, 70, 71, 72]])
封装
class SeqDataLoader:
def __init__(self, tokens, batch_size, num_steps, use_random_iter):
if use_random_iter:
self.data_iter_fn = sequence_radom_iter
else:
self.data_iter_fn = sequence_seq_iter
self.batch_size = batch_size
self.num_steps = num_steps
self.vocab = Vocab(tokens, min_freq=2)
self.corpus = self.vocab.__getitem__([token for line in tokens for token in line])
def __iter__(self):
return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)
def load_text(tokens, batch_size, num_steps, use_random_iter=False):
iter = SeqDataLoader(tokens, batch_size, num_steps, use_random_iter)
return iter, iter.vocab
lines = read_time_machine()
tokens = tokenize(lines, token='char')
data_iter, vocab = load_text(tokens, 4, 20)
print(next(data_iter.__iter__()))
(tensor([[ 2, 1, 13, 4, 15, 9, 5, 6, 2, 1, 21, 19, 1, 9, 1, 18, 1, 17,
2, 12],
[17, 4, 19, 1, 17, 4, 8, 1, 10, 5, 15, 9, 12, 19, 1, 15, 4, 10,
22, 2],
[ 1, 3, 9, 5, 8, 1, 21, 12, 2, 4, 15, 9, 2, 11, 7, 21, 8, 15,
2, 6],
[ 2, 1, 4, 1, 18, 10, 2, 4, 3, 1, 2, 16, 16, 7, 10, 3, 1, 7,
16, 1]]), tensor([[ 1, 13, 4, 15, 9, 5, 6, 2, 1, 21, 19, 1, 9, 1, 18, 1, 17, 2,
12, 12],
[ 4, 19, 1, 17, 4, 8, 1, 10, 5, 15, 9, 12, 19, 1, 15, 4, 10, 22,
2, 11],
[ 3, 9, 5, 8, 1, 21, 12, 2, 4, 15, 9, 2, 11, 7, 21, 8, 15, 2,
6, 2],
[ 1, 4, 1, 18, 10, 2, 4, 3, 1, 2, 16, 16, 7, 10, 3, 1, 7, 16,
1, 13]]))
版权声明:本文为weixin_46217398原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。