两张超级大表join优化

  • Post author:
  • Post category:其他


一个简单的两表关联,SQL跑了差不多一天一夜,这两个表都非常巨大,每个表都有几十个G,数据量每个表有20多亿,表的字段也特别多。

相信大家也知道SQL慢在哪里了,单个进程的PGA 是绝对放不下几十个G的数据,这就会导致消耗大量temp tablespace,SQL慢就是慢在temp来回来回来回…的读写数据。

先创建2个测试表 t1,t2 数据来自dba_objects

create table t1 as select * from dba_objects;

create table t2 as select * from dba_objects;

我们假设 t1 和 t2 就是 两个超级大表, 要运行的 SQL:   select * from t1,t2 where t1.object_id=t2.object_id;

假设t1 t2 都是几十个GB 或者更大, 那么你懂的,上面的SQL基本上是跑不出结果的。

有些人在想,开个并行不就得了,用并行 hash hash 算法跑SQL,其实是不可以的,原因不多说了。

我们可以利用MPP数据库架构(Greenplum/Teradata/vertica)思想,或者是利用HADOOP的思想来对上面的SQL进行优化。

MPP架构/HADOOP架构的很重要的思想就是把数据切割,把大的数据切割为很多份小的数据,然后再对小的进行关联,那速度自然就快了。

在Oracle里面怎么把大数据切成小数据呢,有两个办法,一个是分区,另外一个是分表。我这里选择的是分区,当然了看了这篇文章你也可以分表。

创建一个表P1,在T1的表结构基础上多加一个字段HASH_VALUE,并且根据HASH_VALUE进行LIST分区


CREATE TABLE P1(

HASH_VALUE NUMBER,

OWNER VARCHAR2(30),

OBJECT_NAME VARCHAR2(128),

SUBOBJECT_NAME VARCHAR2(30),

OBJECT_ID NUMBER,

DATA_OBJECT_ID NUMBER,

OBJECT_TYPE VARCHAR2(19),

CREATED DATE,

LAST_DDL_TIME DATE,

TIMESTAMP VARCHAR2(19),

STATUS VARCHAR2(7),

TEMPORARY VARCHAR2(1),

GENERATED VARCHAR2(1),

SECONDARY VARCHAR2(1),

NAMESPACE NUMBER,

EDITION_NAME VARCHAR2(30)

)

PARTITION BY  list(HASH_VALUE)

(

partition p0 values (0),

partition p1 values (1),

partition p2 values (2),

partition p3 values (3),

partition p4 values (4)

)

同样的,在T2的表结构基础上多加一个字段HASH_VALUE,并且根据HASH_VALUE进行LIST分区

CREATE TABLE P2(

HASH_VALUE NUMBER,

OWNER VARCHAR2(30),

OBJECT_NAME VARCHAR2(128),

SUBOBJECT_NAME VARCHAR2(30),

OBJECT_ID NUMBER,

DATA_OBJECT_ID NUMBER,

OBJECT_TYPE VARCHAR2(19),

CREATED DATE,

LAST_DDL_TIME DATE,

TIMESTAMP VARCHAR2(19),

STATUS VARCHAR2(7),

TEMPORARY VARCHAR2(1),

GENERATED VARCHAR2(1),

SECONDARY VARCHAR2(1),

NAMESPACE NUMBER,

EDITION_NAME VARCHAR2(30)

)

PARTITION BY  list(HASH_VALUE)

(

partition p0 values (0),

partition p1 values (1),

partition p2 values (2),

partition p3 values (3),

partition p4 values (4)

)

注意:P1和P2表的分区必须一模一样

delete t1 where object_id is null;

commit;

delete t1 where object_id is null;

commit;

insert into p1

select ora_hash(object_id,4), a.*  from t1 a;  —工作中用append parallel并行插入

commit;

insert into p2

select ora_hash(object_id,4), a.*  from t2 a;  —工作中用append parallel并行插入

commit;

这样就把 T1 和 T2的表的数据转移到 P1 和 P2 表中了

那么之前运行的 select * from t1,t2 where t1.object_id=t2.object_id  其实就等价于下面5个SQL了

select * from p1,p2 where p1.object_id=p2.object_id and p1.hash_value=0 and p2.hash_value=0;

select * from p1,p2 where p1.object_id=p2.object_id and p1.hash_value=1 and p2.hash_value=1;

select * from p1,p2 where p1.object_id=p2.object_id and p1.hash_value=2 and p2.hash_value=2;

select * from p1,p2 where p1.object_id=p2.object_id and p1.hash_value=3 and p2.hash_value=3;

select * from p1,p2 where p1.object_id=p2.object_id and p1.hash_value=4 and p2.hash_value=4;

工作中,大表拆分为多少个分区,请自己判断。另外一个需要注意的就是ORA_HASH函数

oracle中的hash分区就是利用的ora_hash函数

partition by hash(object_id) 等价于 ora_hash(object_id,4294967295)

ora_hash(列,hash桶) hash桶默认是4294967295 可以设置0到4294967295

ora_hash(object_id,4) 会把object_id的值进行hash运算,然后放到 0,1,2,3,4 这些桶里面,也就是说 ora_hash(object_id,4) 只会产生 0 1 2 3 4

转载于:https://www.cnblogs.com/javaGoGo/p/10447499.html