B站 刘二大人 ,传送门
PyTorch深度学习实践——加载数据集
说明:1、DataSet 是抽象类,不能实例化对象,主要是用于构造我们的数据集
2、DataLoader 需要获取DataSet提供的索引[i]和len;用来帮助我们加载数据,比如说做shuffle(提高数据集的随机性),batch_size,能拿出Mini-Batch进行训练。它帮我们自动完成这些工作。DataLoader可实例化对象。DataLoader is a class to help us loading data in Pytorch.
3、__getitem__目的是为支持下标(索引)操作
代码说明:
1、需要mini_batch 就需要import DataSet和DataLoader
2、继承DataSet的类需要重写init,getitem,len魔法函数。分别是为了加载数据集,获取数据索引,获取数据总量。
3、DataLoader对数据集先打乱(shuffle),然后划分成mini_batch。
4、len函数的返回值 除以 batch_size 的结果就是每一轮epoch中需要迭代的次数。
5、inputs, labels = data中的inputs的shape是[32,8],labels 的shape是[32,1]。也就是说mini_batch在这个地方体现的
6、diabetes.csv数据集老师给了下载地址,该数据集需和源代码放在同一个文件夹内。
import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
# prepare dataset
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
self.len = xy.shape[0] # shape(多少行,多少列)
self.x_data = torch.from_numpy(xy[:, :-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset('diabetes.csv')
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=0) #num_workers 多线程
# design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# training cycle forward, backward, update
if __name__ == '__main__':
for epoch in range(100):
for i, data in enumerate(train_loader, 0): # train_loader 是先shuffle后mini_batch
inputs, labels = data
y_pred = model(inputs)
loss = criterion(y_pred, labels)
print(epoch, i, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
自娱自乐部分
1、将原始数据集分为训练集和测试集
2、对训练集进行批量梯度下降
3、评估测试集的准确率
import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
# 读取原始数据,并划分训练集和测试集
raw_data = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
X = raw_data[:, :-1]
y = raw_data[:, [-1]]
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,y,test_size=0.3)
Xtest = torch.from_numpy(Xtest)
Ytest = torch.from_numpy(Ytest)
# 将训练数据集进行批量处理
# prepare dataset
class DiabetesDataset(Dataset):
def __init__(self, data,label):
self.len = data.shape[0] # shape(多少行,多少列)
self.x_data = torch.from_numpy(data)
self.y_data = torch.from_numpy(label)
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
train_dataset = DiabetesDataset(Xtrain,Ytrain)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, num_workers=0) #num_workers 多线程
# design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 2)
self.linear4 = torch.nn.Linear(2, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
x = self.sigmoid(self.linear4(x))
return x
model = Model()
# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# training cycle forward, backward, update
def train(epoch):
train_loss = 0.0
count = 0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
y_pred = model(inputs)
loss = criterion(y_pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
count = i
if epoch%2000 == 1999:
print("train loss:", train_loss/count,end=',')
def test():
with torch.no_grad():
y_pred = model(Xtest)
y_pred_label = torch.where(y_pred>=0.5,torch.tensor([1.0]),torch.tensor([0.0]))
acc = torch.eq(y_pred_label, Ytest).sum().item() / Ytest.size(0)
print("test acc:", acc)
if __name__ == '__main__':
for epoch in range(50000):
train(epoch)
if epoch%2000==1999:
test()