题目
:
https://cn.vjudge.net/problem/HDU-1595
题意
:给出一个不超过1000个点的带权无向图,求删掉其中一条边后最短路的最大值。
思路
:先Dijkstra或SPFA求出原图最短路,显然,当删掉的边不在最短路内时,最短路不变。
因此只需枚举原图最短路上的每一条边,将其删掉求最短路求最大值即为答案。
代码
:C++11
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <stack>
using namespace std;
const int maxn = 1000 + 10;
const int INF = 1e9 + 7;
struct Edge
{
int id;
int from, to, val;
Edge() {}
Edge(int id, int from, int to, int val): from(from), to(to), val(val), id(id) {}
Edge(int from, int val): from(from), val(val) {}
bool operator < (const Edge &t) const
{
return t.val < val;
}
};
vector<Edge> pic[maxn];
vector<Edge> edges;
int d[maxn], p[maxn];
vector<int> ve;
int n, m;
void init()
{
for(int i = 0; i <= n; i++)
{
pic[i].clear();
}
edges.clear();
ve.clear();
}
int dij(int ignore)
{
for(int i = 1; i <= n; i++)
{
d[i] = INF;
p[i] = -1;
}
priority_queue<Edge> q;
d[1] = 0;
q.push(Edge(1, 0));
while(!q.empty())
{
int cur = q.top().from;
int uval = q.top().val;
q.pop();
for(auto &e : pic[cur])
{
if(e.id == ignore) continue;
if(uval + e.val < d[e.to])
{
d[e.to] = uval + e.val;
p[e.to] = e.id;
q.push(Edge(e.to, d[e.to]));
}
}
}
return d[n];
}
void findpath()
{
int cur = n;
while(cur != 1)
{
ve.push_back(p[cur]);
cur = edges[p[cur]].from == cur ? edges[p[cur]].to : edges[p[cur]].from;
}
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF)
{
init();
for(int i = 0; i < m; i++)
{
int a, b, v;
scanf("%d%d%d", &a, &b, &v);
pic[a].push_back(Edge(i, a, b, v));
pic[b].push_back(Edge(i, b, a, v));
edges.push_back(Edge(i, a, b, v));
}
dij(-1);
findpath();
int ans = 0;
for(int i = 0; i < ve.size(); i++)
{
ans = max(ans, dij(ve[i]));
}
cout << ans << endl;
}
return 0;
}
版权声明:本文为Rewriter_huanying原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。