numpy矩阵简介
NumPy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素。虽然它们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中NumPy函数库中的matrix与MATLAB中matrices等价。
numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中。
关于numpy中矩阵和二维数组的取舍
matrix是array的分支,matrix和array在很多时候都是通用的,但官方建议如果两个可以通用,那就选择array,因为array更灵活,速度更快,很多人把二维的array也翻译成矩阵。
matrix的优势就是相对简单的运算符号,如矩阵相乘用符号*,但是array相乘得用方法.dot()。
Note: array * mat也是矩阵相乘,而不是点乘。
array的优势就是不仅仅表示二维,还能表示3、4、5…维,而且在大部分Python程序里,array也是更常用的。
Note:
1. numpy中二维数组不支持求逆运算(给gui),但可以使用scripy中的linalg.inv()函数求逆。
2. lz建议使用二维ndarray代替matrix,结合使用scripy.linalg库可以实现全部矩阵运算。[Scipy教程 – 线性代数库linalg]
Matrix objects矩阵对象
创建示例
np.matrix
>>> a = np.matrix(’1 2; 3 4’)
>>> print a
[[1 2]
[3 4]]
>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],
[3, 4]])
Note:
1. class numpy.matrix(data,dtype,copy):返回一个矩阵,其中data为ndarray对象或者字符形式;dtype:为data的type;copy:为bool类型。
2. 矩阵的换行必须是用分号(;)隔开,内部数据必须为字符串形式(‘ ’),矩阵的元素之间必须以空格隔开。
3. 矩阵中的data可以为数组对象。
np.asmatrix
>>> x = np.array([[1, 2], [3, 4]])
>>> m = np.asmatrix(x)
>>> x[0,0] = 5
>>> m
matrix([[5, 2],
[3, 4]])
矩阵对象属性Attribute