关于python模型的部署,目前有以下几种方式
- flask等python为服务框架,无需跨语言
- xgb4j,lgb4j等Java包,需跨语言,但只支持xgb/lgb
- PMML,跨语言,支持所有sklearn接口的模型
综上所述,当遇到跨语言部署时,PMML是个万金油方式,可以将所有sklearn接口的模型转换为PMML文件,并用JAVA/SCALA相关的包进行解析
,然而经过一番调研,网上关于python如何转为PMML的信息却极为有限,故在此总结。
1、DataFrameMapper
- 目前DataFrameMapper支持sklearn.preprocessing中的若干类,如MinMaxScaler()、OneHotEncoder()等
- DataFrameMapper支持自定义函数,可使用FunctionTransformer(),将自定义函数转换为类似MinMaxScaler()类的格式
- DataFrameMapper支持单列或多列级联变换
- sklearn.preprocessing中的函数输入为numpy.ndarray
mapper = DataFrameMapper([
(["Sepal.Length"],FunctionTransformer(np.abs)),
(["Sepal.Width"],[MinMaxScaler(), Imputer()]),
(["Petal.Length"],None),
(["Petal.Width"],OneHotEncoder()),
(['Petal.Length', 'Petal.Width'], [MinMaxScaler(),StandardScaler()])
])
2、PMMLPipeline
- PMMLPipeline中支持整体变换类,如PCA、SelectKBest、GBDT等,只要符合sklearn接口格式,具有fit transform即可
- 理论上支持符合规则的自定义函数
iris_pipeline = PMMLPipeline([
("mapper", mapper),
("pca", PCA(n_components=3)),
("selector", SelectKBest(k=2)), #返回k个最佳特征
("classifier", GBDT)])
iris_pipeline.fit(df_x, y)
3、sklearn2pmml
保存为PMML文件
sklearn2pmml(iris_pipeline, savemodel, with_repr=True)
其他注意事项
- 由于DataFrameMapper对特征工程支持有限,特征工程可以线上线下分开单独做,也可以用 DataFrameMapper 的方式实现特征工程,导出到模型文件中,这样线上就无需再做一遍特征工程
完整代码
"""
文件说明:鸢尾花数据集
"""
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn2pmml import sklearn2pmml, PMMLPipeline
from sklearn2pmml.decoration import ContinuousDomain
from sklearn.feature_selection import SelectKBest
# frameworks for ML
from sklearn_pandas import DataFrameMapper
from sklearn.pipeline import make_pipeline
# transformers for category variables
from sklearn.preprocessing import LabelBinarizer
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Imputer
# transformers for numerical variables
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import Normalizer
# transformers for combined variables
from sklearn.decomposition import PCA
from sklearn.preprocessing import PolynomialFeatures
# user-defined transformers
from sklearn.preprocessing import FunctionTransformer
def read_data():
#读取鸢尾花数据
data=load_iris()
x=data.data
y=data.target
df_x = pd.DataFrame(x)
df_x.columns = ["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"]
return df_x,y
def all_classifiers_test(savemodel='GBDT.pmml'):
'''
GBDT模型
'''
GBDT = GradientBoostingClassifier()
df_x,y = read_data()
# 特征工程
mapper = DataFrameMapper([
(["Sepal.Length"],FunctionTransformer(np.abs)),
(["Sepal.Width"],[MinMaxScaler(), Imputer()]),
(["Petal.Length"],None),
(["Petal.Width"],OneHotEncoder()),
(['Petal.Length', 'Petal.Width'], [MinMaxScaler(),StandardScaler()])
])
# mapper = DataFrameMapper([
# (["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"], [MinMaxScaler(),StandardScaler(),Imputer()])
# ])
iris_pipeline = PMMLPipeline([
("mapper", mapper),
("pca", PCA(n_components=3)),
("selector", SelectKBest(k=2)), #返回k个最佳特征
("classifier", GBDT)])
iris_pipeline.fit(df_x, y)
# iris_pipeline.fit(X_train.values, y_train)
# 导出模型文件
sklearn2pmml(iris_pipeline, savemodel, with_repr=True)
版权声明:本文为slibra_L原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。