Spark核心编程创建RDD及transformation和action详解和案例

  • Post author:
  • Post category:其他


创建RDD

进行Spark核心编程时,首先要做的第一件事,就是创建一个初始的RDD。该RDD中,通常就代表和包含了Spark应用程序的输入源数据。然后在创建了初始的RDD之后,才可以通过Spark Core提供的transformation算子,对该RDD进行转换,来获取其他的RDD。

Spark Core提供了三种创建RDD的方式,包括:使用程序中的集合创建RDD;使用本地文件创建RDD;使用HDFS文件创建RDD。

个人经验认为:

1、使用程序中的集合创建RDD,主要用于进行测试,可以在实际部署到集群运行之前,自己使用集合构造测试数据,来测试后面的spark应用的流程。

2、使用本地文件创建RDD,主要用于临时性地处理一些存储了大量数据的文件。

3、使用HDFS文件创建RDD,应该是最常用的生产环境处理方式,主要可以针对HDFS上存储的大数据,进行离线批处理操作。

并行化集合创建RDD

如果要通过并行化集合来创建RDD,需要针对程序中的集合,调用SparkContext的parallelize()方法。Spark会将集合中的数据拷贝到集群上去,形成一个分布式的数据集合,也就是一个RDD。相当于是,集合中的部分数据会到一个节点上,而另一部分数据会到其他节点上。然后就可以用并行的方式来操作这个分布式数据集合,即RDD。

java

package cn.spark.study.core;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;

/**
 * 并行化集合创建RDD
 * 案例:累加1到10
 * @author Administrator
 *
 */
public class ParallelizeCollection {

    public static void main(String[] args) {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("ParallelizeCollection")
                .setMaster("local");  

        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 要通过并行化集合的方式创建RDD,那么就调用SparkContext以及其子类,的parallelize()方法
        List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numberRDD = sc.parallelize(numbers);

        // 执行reduce算子操作
        // 相当于,先进行1 + 2 = 3;然后再用3 + 3 = 6;然后再用6 + 4 = 10。。。以此类推
        int sum = numberRDD.reduce(new Function2<Integer, Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer num1, Integer num2) throws Exception {
                return num1 + num2;
            }

        });

        // 输出累加的和
        System.out.println("1到10的累加和:" + sum);  

        // 关闭JavaSparkContext
        sc.close();
    }

}

scala

package cn.spark.study.core

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
 * @author Administrator
 */
object ParallelizeCollection {

  def main(args: Array[String]) {
    val conf = new SparkConf()
        .setAppName("ParallelizeCollection")
        .setMaster("local")
    val sc = new SparkContext(conf)

    val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val numberRDD = sc.parallelize(numbers, 5)  
    val sum = numberRDD.reduce(_ + _)  

    println("1到10的累加和:" + sum)  
  }

}

调用parallelize()时,有一个重要的参数可以指定,就是要将集合切分成多少个partition。Spark会为每一个partition运行一个task来进行处理。Spark官方的建议是,为集群中的每个CPU创建2~4个partition。Spark默认会根据集群的情况来设置partition的数量。但是也可以在调用parallelize()方法时,传入第二个参数,来设置RDD的partition数量。比如parallelize(arr, 10)

使用本地文件和HDFS创建RDD

Spark是支持使用任何Hadoop支持的存储系统上的文件创建RDD的,比如说HDFS、Cassandra、HBase以及本地文件。通过调用SparkContext的textFile()方法,可以针对本地文件或HDFS文件创建RDD。

有几个事项是需要注意的:

1、如果是针对本地文件的话,如果是在windows上本地测试,windows上有一份文件即可;如果是在spark集群上针对linux本地文件,那么需要将文件拷贝到所有worker节点上。

2、Spark的textFile()方法支持针对目录、压缩文件以及通配符进行RDD创建。

3、Spark默认会为hdfs文件的每一个block创建一个partition,但是也可以通过textFile()的第二个参数手动设置分区数量,只能比block数量多,不能比block数量少。

java

package cn.spark.study.core;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;

/**
 * 使用本地文件创建RDD
 * 案例:统计文本文件字数
 * @author Administrator
 *
 */
public class LocalFile {

    public static void main(String[] args) {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("LocalFile")
                .setMaster("local"); 
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 使用SparkContext以及其子类的textFile()方法,针对本地文件创建RDD
        JavaRDD<String> lines = sc.textFile("C://Users//Administrator//Desktop//spark.txt");

        // 统计文本文件内的字数
        JavaRDD<Integer> lineLength = lines.map(new Function<String, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(String v1) throws Exception {
                return v1.length();
            }

        });

        int count = lineLength.reduce(new Function2<Integer, Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }

        });

        System.out.println("文件总字数是:" + count);  

        // 关闭JavaSparkContext
        sc.close();
    }

}

package cn.spark.study.core;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;

/**
 * 使用HDFS文件创建RDD
 * 案例:统计文本文件字数
 * @author Administrator
 *
 */
public class HDFSFile {

    public static void main(String[] args) {
        // 创建SparkConf
        // 修改:去除setMaster()设置,修改setAppName()
        SparkConf conf = new SparkConf()
                .setAppName("HDFSFile"); 
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 使用SparkContext以及其子类的textFile()方法,针对HDFS文件创建RDD
        // 只要把textFile()内的路径修改为hdfs文件路径即可
        JavaRDD<String> lines = sc.textFile("hdfs://spark1:9000/spark.txt");

        // 统计文本文件内的字数
        JavaRDD<Integer> lineLength = lines.map(new Function<String, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(String v1) throws Exception {
                return v1.length();
            }

        });

        int count = lineLength.reduce(new Function2<Integer, Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }

        });

        System.out.println("文件总字数是:" + count);  

        // 关闭JavaSparkContext
        sc.close();
    }

}

scala

package cn.spark.study.core

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
 * @author Administrator
 */
object LocalFile {

  def main(args: Array[String]) {
    val conf = new SparkConf()
        .setAppName("LocalFile") 
        .setMaster("local");  
    val sc = new SparkContext(conf)

    val lines = sc.textFile("C://Users//Administrator//Desktop//spark.txt", 1);
    val count = lines.map { line => line.length() }.reduce(_ + _)  

    println("file's count is " + count)  
  }

}
package cn.spark.study.core

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
 * @author Administrator
 */
object HDFSFile {

  def main(args: Array[String]) {
    val conf = new SparkConf()
        .setAppName("HDFSFile") ;  
    val sc = new SparkContext(conf)

    val lines = sc.textFile("hdfs://spark1:9000/spark.txt", 1);
    val count = lines.map { line => line.length() }.reduce(_ + _)  

    println("file's count is " + count)  
  }

}

使用本地文件和HDFS创建RDD

Spark的textFile()除了可以针对上述几种普通的文件创建RDD之外,还有一些特列的方法来创建RDD:

1、SparkContext.wholeTextFiles()方法,可以针对一个目录中的大量小文件,返回

transformation和action介绍

Spark支持两种RDD操作:transformation和action。transformation操作会针对已有的RDD创建一个新的RDD;而action则主要是对RDD进行最后的操作,比如遍历、reduce、保存到文件等,并可以返回结果给Driver程序。

例如,map就是一种transformation操作,它用于将已有RDD的每个元素传入一个自定义的函数,并获取一个新的元素,然后将所有的新元素组成一个新的RDD。而reduce就是一种action操作,它用于对RDD中的所有元素进行聚合操作,并获取一个最终的结果,然后返回给Driver程序。

transformation的特点就是lazy特性。lazy特性指的是,如果一个spark应用中只定义了transformation操作,那么即使你执行该应用,这些操作也不会执行。也就是说,transformation是不会触发spark程序的执行的,它们只是记录了对RDD所做的操作,但是不会自发的执行。只有当transformation之后,接着执行了一个action操作,那么所有的transformation才会执行。Spark通过这种lazy特性,来进行底层的spark应用执行的优化,避免产生过多中间结果。

action操作执行,会触发一个spark job的运行,从而触发这个action之前所有的transformation的执行。这是action的特性。

transformation和action原理剖析

这里写图片描述

案例:统计文件字数

// 这里通过textFile()方法,针对外部文件创建了一个RDD,lines,但是实际上,程序执行到这里为止,spark.txt文件的数据是不会加载到内存中的。lines,只是代表了一个指向spark.txt文件的引用。
val lines = sc.textFile("spark.txt")

// 这里对lines RDD进行了map算子,获取了一个转换后的lineLengths RDD。但是这里连数据都没有,当然也不会做任何操作。lineLengths RDD也只是一个概念上的东西而已。
val lineLengths = lines.map(line => line.length)

// 之列,执行了一个action操作,reduce。此时就会触发之前所有transformation操作的执行,Spark会将操作拆分成多个task到多个机器上并行执行,每个task会在本地执行map操作,并且进行本地的reduce聚合。最后会进行一个全局的reduce聚合,然后将结果返回给Driver程序。
val totalLength = lineLengths.reduce(_ + _)

案例:统计文件每行出现的次数

Spark有些特殊的算子,也就是特殊的transformation操作。比如groupByKey、sortByKey、reduceByKey等,其实只是针对特殊的RDD的。即包含key-value对的RDD。而这种RDD中的元素,实际上是scala中的一种类型,即Tuple2,也就是包含两个值的Tuple。

在scala中,需要手动导入Spark的相关隐式转换,import org.apache.spark.SparkContext._。然后,对应包含Tuple2的RDD,会自动隐式转换为PairRDDFunction,并提供reduceByKey等方法。

val lines = sc.textFile(“hello.txt”)

val linePairs = lines.map(line => (line, 1))

val lineCounts = linePairs.reduceByKey(_ + _)

lineCounts.foreach(lineCount => println(lineCount._1 + ” appears ” + llineCount._2 + ” times.”))

常用transformation介绍

这里写图片描述

常用action介绍

这里写图片描述

transformation操作开发实战(重点)

java

package cn.spark.study.core;

import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

/**
 * transformation操作实战
 * @author Administrator
 *
 */
@SuppressWarnings(value = {"unused", "unchecked"})
public class TransformationOperation {

    public static void main(String[] args) {
        // map();
        // filter();
        // flatMap();
        // groupByKey();
        // reduceByKey();
        // sortByKey();
        // join();
        cogroup();
    }

    /**
     * map算子案例:将集合中每一个元素都乘以2
     */
    private static void map() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("map")
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 构造集合
        List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

        // 并行化集合,创建初始RDD
        JavaRDD<Integer> numberRDD = sc.parallelize(numbers);

        // 使用map算子,将集合中的每个元素都乘以2
        // map算子,是对任何类型的RDD,都可以调用的
        // 在java中,map算子接收的参数是Function对象
        // 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
            // 同时call()方法的返回类型,也必须与第二个泛型类型同步
        // 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
        // 所有新的元素就会组成一个新的RDD
        JavaRDD<Integer> multipleNumberRDD = numberRDD.map(

                new Function<Integer, Integer>() {

                    private static final long serialVersionUID = 1L;

                    // 传入call()方法的,就是1,2,3,4,5
                    // 返回的就是2,4,6,8,10
                    @Override
                    public Integer call(Integer v1) throws Exception {
                        return v1 * 2;
                    }

                });

        // 打印新的RDD
        multipleNumberRDD.foreach(new VoidFunction<Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Integer t) throws Exception {
                System.out.println(t);  
            }

        });

        // 关闭JavaSparkContext
        sc.close();
    }

    /**
     * filter算子案例:过滤集合中的偶数
     */
    private static void filter() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("filter")
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 模拟集合
        List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

        // 并行化集合,创建初始RDD
        JavaRDD<Integer> numberRDD = sc.parallelize(numbers);

        // 对初始RDD执行filter算子,过滤出其中的偶数
        // filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
        // 但是,唯一的不同,就是call()方法的返回类型是Boolean
        // 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
        // 来判断这个元素是否是你想要的
        // 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
        JavaRDD<Integer> evenNumberRDD = numberRDD.filter(

                new Function<Integer, Boolean>() {

                    private static final long serialVersionUID = 1L;

                    // 在这里,1到10,都会传入进来
                    // 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
                    // 所以,只有偶数会保留下来,放在新的RDD中
                    @Override
                    public Boolean call(Integer v1) throws Exception {
                        return v1 % 2 == 0;
                    }

                });

        // 打印新的RDD
        evenNumberRDD.foreach(new VoidFunction<Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Integer t) throws Exception {
                System.out.println(t);
            }

        });

        // 关闭JavaSparkContext
        sc.close();
    }

    /**
     * flatMap案例:将文本行拆分为多个单词
     */
    private static void flatMap() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("flatMap")  
                .setMaster("local");  
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 构造集合
        List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");  

        // 并行化集合,创建RDD
        JavaRDD<String> lines = sc.parallelize(lineList);

        // 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
        // flatMap算子,在java中,接收的参数是FlatMapFunction
        // 我们需要自己定义FlatMapFunction的第二个泛型类型,即,代表了返回的新元素的类型
        // call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
        // flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,返回可以返回多个元素
        // 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
        // 新的RDD中,即封装了所有的新元素;也就是说,新的RDD的大小一定是 >= 原始RDD的大小
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {

            private static final long serialVersionUID = 1L;

            // 在这里会,比如,传入第一行,hello you
            // 返回的是一个Iterable<String>(hello, you)
            @Override
            public Iterable<String> call(String t) throws Exception {
                return Arrays.asList(t.split(" "));
            }

        });

        // 打印新的RDD
        words.foreach(new VoidFunction<String>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(String t) throws Exception {
                System.out.println(t);
            }
        });

        // 关闭JavaSparkContext
        sc.close();
    }

    /**
     * groupByKey案例:按照班级对成绩进行分组
     */
    private static void groupByKey() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("groupByKey")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 模拟集合
        List<Tuple2<String, Integer>> scoreList = Arrays.asList(
                new Tuple2<String, Integer>("class1", 80),
                new Tuple2<String, Integer>("class2", 75),
                new Tuple2<String, Integer>("class1", 90),
                new Tuple2<String, Integer>("class2", 65));

        // 并行化集合,创建JavaPairRDD
        JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);

        // 针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
        // groupByKey算子,返回的还是JavaPairRDD
        // 但是,JavaPairRDD的第一个泛型类型不变,第二个泛型类型变成Iterable这种集合类型
        // 也就是说,按照了key进行分组,那么每个key可能都会有多个value,此时多个value聚合成了Iterable
        // 那么接下来,我们是不是就可以通过groupedScores这种JavaPairRDD,很方便地处理某个分组内的数据
        JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();

        // 打印groupedScores RDD
        groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<String, Iterable<Integer>> t)
                    throws Exception {
                System.out.println("class: " + t._1);  
                Iterator<Integer> ite = t._2.iterator();
                while(ite.hasNext()) {
                    System.out.println(ite.next());  
                }
                System.out.println("==============================");   
            }

        });

        // 关闭JavaSparkContext
        sc.close();
    }

    /**
     * reduceByKey案例:统计每个班级的总分
     */
    private static void reduceByKey() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("reduceByKey")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 模拟集合
        List<Tuple2<String, Integer>> scoreList = Arrays.asList(
                new Tuple2<String, Integer>("class1", 80),
                new Tuple2<String, Integer>("class2", 75),
                new Tuple2<String, Integer>("class1", 90),
                new Tuple2<String, Integer>("class2", 65));

        // 并行化集合,创建JavaPairRDD
        JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);

        // 针对scores RDD,执行reduceByKey算子
        // reduceByKey,接收的参数是Function2类型,它有三个泛型参数,实际上代表了三个值
        // 第一个泛型类型和第二个泛型类型,代表了原始RDD中的元素的value的类型
            // 因此对每个key进行reduce,都会依次将第一个、第二个value传入,将值再与第三个value传入
            // 因此此处,会自动定义两个泛型类型,代表call()方法的两个传入参数的类型
        // 第三个泛型类型,代表了每次reduce操作返回的值的类型,默认也是与原始RDD的value类型相同的
        // reduceByKey算法返回的RDD,还是JavaPairRDD<key, value>
        JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(

                new Function2<Integer, Integer, Integer>() {

                    private static final long serialVersionUID = 1L;

                    // 对每个key,都会将其value,依次传入call方法
                    // 从而聚合出每个key对应的一个value
                    // 然后,将每个key对应的一个value,组合成一个Tuple2,作为新RDD的元素
                    @Override
                    public Integer call(Integer v1, Integer v2) throws Exception {
                        return v1 + v2;
                    }

                });

        // 打印totalScores RDD
        totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<String, Integer> t) throws Exception {
                System.out.println(t._1 + ": " + t._2);   
            }

        });

        // 关闭JavaSparkContext
        sc.close();
    }

    /**
     * sortByKey案例:按照学生分数进行排序
     */
    private static void sortByKey() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("sortByKey")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 模拟集合
        List<Tuple2<Integer, String>> scoreList = Arrays.asList(
                new Tuple2<Integer, String>(65, "leo"),
                new Tuple2<Integer, String>(50, "tom"),
                new Tuple2<Integer, String>(100, "marry"),
                new Tuple2<Integer, String>(80, "jack"));

        // 并行化集合,创建RDD
        JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);

        // 对scores RDD执行sortByKey算子
        // sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序
        // 返回的,还是JavaPairRDD,其中的元素内容,都是和原始的RDD一模一样的
        // 但是就是RDD中的元素的顺序,不同了
        JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false);  

        // 打印sortedScored RDD
        sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<Integer, String> t) throws Exception {
                System.out.println(t._1 + ": " + t._2);  
            }

        });

        // 关闭JavaSparkContext
        sc.close();
    }

    /**
     * join案例:打印学生成绩
     */
    private static void join() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("join")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 模拟集合
        List<Tuple2<Integer, String>> studentList = Arrays.asList(
                new Tuple2<Integer, String>(1, "leo"),
                new Tuple2<Integer, String>(2, "jack"),
                new Tuple2<Integer, String>(3, "tom"));

        List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
                new Tuple2<Integer, Integer>(1, 100),
                new Tuple2<Integer, Integer>(2, 90),
                new Tuple2<Integer, Integer>(3, 60));

        // 并行化两个RDD
        JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
        JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);

        // 使用join算子关联两个RDD
        // join以后,还是会根据key进行join,并返回JavaPairRDD
        // 但是JavaPairRDD的第一个泛型类型,之前两个JavaPairRDD的key的类型,因为是通过key进行join的
        // 第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
        // join,就返回的RDD的每一个元素,就是通过key join上的一个pair
        // 什么意思呢?比如有(1, 1) (1, 2) (1, 3)的一个RDD
            // 还有一个(1, 4) (2, 1) (2, 2)的一个RDD
            // join以后,实际上会得到(1 (1, 4)) (1, (2, 4)) (1, (3, 4))
        JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);

        // 打印studnetScores RDD
        studentScores.foreach(

                new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public void call(Tuple2<Integer, Tuple2<String, Integer>> t)
                            throws Exception {
                        System.out.println("student id: " + t._1);  
                        System.out.println("student name: " + t._2._1);  
                        System.out.println("student score: " + t._2._2);
                        System.out.println("===============================");   
                    }

                });

        // 关闭JavaSparkContext
        sc.close();
    }

    /**
     * cogroup案例:打印学生成绩
     */
    private static void cogroup() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("cogroup")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 模拟集合
        List<Tuple2<Integer, String>> studentList = Arrays.asList(
                new Tuple2<Integer, String>(1, "leo"),
                new Tuple2<Integer, String>(2, "jack"),
                new Tuple2<Integer, String>(3, "tom"));

        List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
                new Tuple2<Integer, Integer>(1, 100),
                new Tuple2<Integer, Integer>(2, 90),
                new Tuple2<Integer, Integer>(3, 60),
                new Tuple2<Integer, Integer>(1, 70),
                new Tuple2<Integer, Integer>(2, 80),
                new Tuple2<Integer, Integer>(3, 50));

        // 并行化两个RDD
        JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
        JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);

        // cogroup与join不同
        // 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了 
        // cogroup,不太好讲解,希望大家通过动手编写我们的案例,仔细体会其中的奥妙
        JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores = 
                students.cogroup(scores);

        // 打印studnetScores RDD
        studentScores.foreach(

                new VoidFunction<Tuple2<Integer,Tuple2<Iterable<String>,Iterable<Integer>>>>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public void call(
                            Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t)
                            throws Exception {
                        System.out.println("student id: " + t._1);  
                        System.out.println("student name: " + t._2._1);  
                        System.out.println("student score: " + t._2._2);
                        System.out.println("===============================");   
                    }

                });

        // 关闭JavaSparkContext
        sc.close();
    }

}

scala

package cn.spark.study.core

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
 * @author Administrator
 */
object TransformationOperation {

  def main(args: Array[String]) {
    // map()  
    // filter()  
    // flatMap()  
    // groupByKey() 
    // reduceByKey()  
    // sortByKey() 
    // join()  
    cogroup()
  }

  def map() {
    val conf = new SparkConf()
        .setAppName("map")
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val numbers = Array(1, 2, 3, 4, 5)
    val numberRDD = sc.parallelize(numbers, 1)  
    val multipleNumberRDD = numberRDD.map { num => num * 2 }  

    multipleNumberRDD.foreach { num => println(num) }   
  }

  def filter() {
    val conf = new SparkConf()
        .setAppName("filter")
        .setMaster("local")
    val sc = new SparkContext(conf)

    val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val numberRDD = sc.parallelize(numbers, 1)
    val evenNumberRDD = numberRDD.filter { num => num % 2 == 0 }

    evenNumberRDD.foreach { num => println(num) }   
  }

  def flatMap() {
    val conf = new SparkConf()
        .setAppName("flatMap")  
        .setMaster("local")  
    val sc = new SparkContext(conf) 

    val lineArray = Array("hello you", "hello me", "hello world")  
    val lines = sc.parallelize(lineArray, 1)
    val words = lines.flatMap { line => line.split(" ") }   

    words.foreach { word => println(word) }
  }

  def groupByKey() {
    val conf = new SparkConf()
        .setAppName("groupByKey")  
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
        Tuple2("class1", 90), Tuple2("class2", 60))
    val scores = sc.parallelize(scoreList, 1)  
    val groupedScores = scores.groupByKey() 

    groupedScores.foreach(score => { 
      println(score._1); 
      score._2.foreach { singleScore => println(singleScore) };
      println("=============================")  
    })
  }

  def reduceByKey() {
    val conf = new SparkConf()
        .setAppName("groupByKey")  
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
        Tuple2("class1", 90), Tuple2("class2", 60))
    val scores = sc.parallelize(scoreList, 1)  
    val totalScores = scores.reduceByKey(_ + _)  

    totalScores.foreach(classScore => println(classScore._1 + ": " + classScore._2))  
  }

  def sortByKey() {
    val conf = new SparkConf()
        .setAppName("sortByKey")  
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val scoreList = Array(Tuple2(65, "leo"), Tuple2(50, "tom"), 
        Tuple2(100, "marry"), Tuple2(85, "jack"))  
    val scores = sc.parallelize(scoreList, 1)  
    val sortedScores = scores.sortByKey(false)

    sortedScores.foreach(studentScore => println(studentScore._1 + ": " + studentScore._2))  
  }

  def join() {
    val conf = new SparkConf()
        .setAppName("join")  
        .setMaster("local")  
    val sc = new SparkContext(conf)

   val studentList = Array(
        Tuple2(1, "leo"),
        Tuple2(2, "jack"),
        Tuple2(3, "tom"));

   val scoreList = Array(
        Tuple2(1, 100),
        Tuple2(2, 90),
        Tuple2(3, 60));

    val students = sc.parallelize(studentList);
    val scores = sc.parallelize(scoreList);

    val studentScores = students.join(scores)  

    studentScores.foreach(studentScore => { 
      println("student id: " + studentScore._1);
      println("student name: " + studentScore._2._1)
      println("student socre: " + studentScore._2._2)  
      println("=======================================")  
    })  
  }

  def cogroup() {
    val conf = new SparkConf()
        .setAppName("join")  
        .setMaster("local")  
    val sc = new SparkContext(conf)

   val studentList = Array(
        Tuple2(1, "leo"),
        Tuple2(2, "jack"),
        Tuple2(3, "tom"));

   val scoreList = Array(
        Tuple2(1, 100),
        Tuple2(2, 90),
        Tuple2(3, 60),
        Tuple2(1, 80),
        Tuple2(2, 950),
        Tuple2(3, 70));

    val students = sc.parallelize(studentList);
    val scores = sc.parallelize(scoreList);

    val studentScores = students.cogroup(scores)  

    studentScores.foreach(studentScore => { 
      println("student id: " + studentScore._1);
      println("student name: " + studentScore._2._1)
      println("student socre: " + studentScore._2._2)  
      println("=======================================")  
    })  
  }

}

action操作开发实战(重点)

java

package cn.spark.study.core;

import java.util.Arrays;
import java.util.List;
import java.util.Map;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;

import scala.Tuple2;

/**
 * action操作实战
 * @author Administrator
 *
 */
@SuppressWarnings("unused")
public class ActionOperation {

    public static void main(String[] args) {
        // reduce();
        // collect();
        // count();
        // take();
        saveAsTextFile();
        // countByKey();
    }

    private static void reduce() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("reduce")
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);

        // 使用reduce操作对集合中的数字进行累加
        // reduce操作的原理:
            // 首先将第一个和第二个元素,传入call()方法,进行计算,会获取一个结果,比如1 + 2 = 3
            // 接着将该结果与下一个元素传入call()方法,进行计算,比如3 + 3 = 6
            // 以此类推
        // 所以reduce操作的本质,就是聚合,将多个元素聚合成一个元素
        int sum = numbers.reduce(new Function2<Integer, Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }

        });

        System.out.println(sum);  

        // 关闭JavaSparkContext
        sc.close();
    }

    private static void collect() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("collect")
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);

        // 使用map操作将集合中所有数字乘以2
        JavaRDD<Integer> doubleNumbers = numbers.map(

                new Function<Integer, Integer>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Integer call(Integer v1) throws Exception {
                        return v1 * 2;
                    }

                });

        // 不用foreach action操作,在远程集群上遍历rdd中的元素
        // 而使用collect操作,将分布在远程集群上的doubleNumbers RDD的数据拉取到本地
        // 这种方式,一般不建议使用,因为如果rdd中的数据量比较大的话,比如超过1万条
            // 那么性能会比较差,因为要从远程走大量的网络传输,将数据获取到本地
            // 此外,除了性能差,还可能在rdd中数据量特别大的情况下,发生oom异常,内存溢出
        // 因此,通常,还是推荐使用foreach action操作,来对最终的rdd元素进行处理
        List<Integer> doubleNumberList = doubleNumbers.collect();
        for(Integer num : doubleNumberList) {
            System.out.println(num);  
        }

        // 关闭JavaSparkContext
        sc.close();
    }

    private static void count() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("count")
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);

        // 对rdd使用count操作,统计它有多少个元素
        long count = numbers.count();
        System.out.println(count);  

        // 关闭JavaSparkContext
        sc.close();
    }

    private static void take() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("take")
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);

        // 对rdd使用count操作,统计它有多少个元素
        // take操作,与collect类似,也是从远程集群上,获取rdd的数据
        // 但是collect是获取rdd的所有数据,take只是获取前n个数据
        List<Integer> top3Numbers = numbers.take(3);

        for(Integer num : top3Numbers) {
            System.out.println(num);  
        }

        // 关闭JavaSparkContext
        sc.close();
    }

    private static void saveAsTextFile() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("saveAsTextFile");  
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);

        // 使用map操作将集合中所有数字乘以2
        JavaRDD<Integer> doubleNumbers = numbers.map(

                new Function<Integer, Integer>() {

                    private static final long serialVersionUID = 1L;

                    @Override
                    public Integer call(Integer v1) throws Exception {
                        return v1 * 2;
                    }

                });

        // 直接将rdd中的数据,保存在HFDS文件中
        // 但是要注意,我们这里只能指定文件夹,也就是目录
        // 那么实际上,会保存为目录中的/double_number.txt/part-00000文件
        doubleNumbers.saveAsTextFile("hdfs://eshop-cache01:9000/double_number.txt");   

        // 关闭JavaSparkContext
        sc.close();
    }

    @SuppressWarnings("unchecked")
    private static void countByKey() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("countByKey")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 模拟集合
        List<Tuple2<String, String>> scoreList = Arrays.asList(
                new Tuple2<String, String>("class1", "leo"),
                new Tuple2<String, String>("class2", "jack"),
                new Tuple2<String, String>("class1", "marry"),
                new Tuple2<String, String>("class2", "tom"),
                new Tuple2<String, String>("class2", "david"));  

        // 并行化集合,创建JavaPairRDD
        JavaPairRDD<String, String> students = sc.parallelizePairs(scoreList);

        // 对rdd应用countByKey操作,统计每个班级的学生人数,也就是统计每个key对应的元素个数
        // 这就是countByKey的作用
        // countByKey返回的类型,直接就是Map<String, Object>
        Map<String, Object> studentCounts = students.countByKey();

        for(Map.Entry<String, Object> studentCount : studentCounts.entrySet()) {
            System.out.println(studentCount.getKey() + ": " + studentCount.getValue());  
        }

        // 关闭JavaSparkContext
        sc.close();
    }

}


linux下saveAsTextFile运行结果


这里写图片描述

scala

package cn.spark.study.core

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
 * @author Administrator
 */
object ActionOperation {

  def main(args: Array[String]) {
    // reduce()  
    // collect()  
    // count() 
    // take() 
    //countByKey()  
    saveAsTextFile()
  }

  def reduce() {
    val conf = new SparkConf()
        .setAppName("reduce")
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val numberArray = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val numbers = sc.parallelize(numberArray, 1)  
    val sum = numbers.reduce(_ + _)  

    println(sum)  
  }

  def collect() {
    val conf = new SparkConf()
        .setAppName("collect")
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val numberArray = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val numbers = sc.parallelize(numberArray, 1)  
    val doubleNumbers = numbers.map { num => num * 2 }  

    val doubleNumberArray = doubleNumbers.collect()

    for(num <- doubleNumberArray) {
      println(num)  
    }
  }

  def count() {
    val conf = new SparkConf()
        .setAppName("count")
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val numberArray = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val numbers = sc.parallelize(numberArray, 1)  
    val count = numbers.count()

    println(count)  
  }

  def take() {
    val conf = new SparkConf()
        .setAppName("take")
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val numberArray = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val numbers = sc.parallelize(numberArray, 1)  

    val top3Numbers = numbers.take(3)

    for(num <- top3Numbers) {
      println(num)  
    }
  }

  def saveAsTextFile() {
    val conf = new SparkConf()
        .setAppName("collect")
    val sc = new SparkContext(conf)

    val numberArray = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    val numbers = sc.parallelize(numberArray, 1)  
    val doubleNumbers = numbers.map { num => num * 2 }  
    doubleNumbers.saveAsTextFile("hdfs://eshop-cache01:9000/double_number_scala.txt");
  }

  def countByKey() {
    val conf = new SparkConf()
        .setAppName("countByKey")  
        .setMaster("local")  
    val sc = new SparkContext(conf)

    val studentList = Array(Tuple2("class1", "leo"), Tuple2("class2", "jack"),
        Tuple2("class1", "tom"), Tuple2("class2", "jen"), Tuple2("class2", "marry"))   
    val students = sc.parallelize(studentList, 1)  
    val studentCounts = students.countByKey()  

    println(studentCounts)  
  }

}


linux下saveAsTextFile运行结果


这里写图片描述