原文如下
原文地址
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-sparkcontext-ConsoleProgressBar.html
ConsoleProgressBar
ConsoleProgressBar
shows the progress of active stages to standard error, i.e.
stderr
. It uses
SparkStatusTracker
to poll the status of stages periodically and print out active stages with more than one task. It keeps overwriting itself to hold in one line for at most 3 first concurrent stages at a time.
[Stage 0:====> (316 + 4) / 1000][Stage 1:> (0 + 0) / 1000][Stage 2:> (0 + 0) / 1000]]]
The progress includes the stage id, the number of completed, active, and total tasks.
Tip |
may be useful when you
to workers and want to see the progress of active stages. |
ConsoleProgressBar
is created
when
SparkContext
starts
with
spark.ui.showConsoleProgress
enabled and the logging level of
org.apache.spark.SparkContext
logger as
WARN
or higher (i.e. less messages are printed out and so there is a “space” for
ConsoleProgressBar
).
import org.apache.log4j._
Logger.getLogger("org.apache.spark.SparkContext").setLevel(Level.WARN)
To print the progress nicely
ConsoleProgressBar
uses
COLUMNS
environment variable to know the width of the terminal. It assumes
80
columns.
The progress bar prints out the status after a stage has ran at least
500
milliseconds every
spark.ui.consoleProgress.update.interval
milliseconds.
Note |
The initial delay of
milliseconds before
show the progress is not configurable. |
See the progress bar in Spark shell with the following:
$ ./bin/spark-shell --conf spark.ui.showConsoleProgress=true (1)
scala> sc.setLogLevel("OFF") (2)
scala> import org.apache.log4j._
import org.apache.log4j._
scala> Logger.getLogger("org.apache.spark.SparkContext").setLevel(Level.WARN) (3)
scala> sc.parallelize(1 to 4, 4).map { n => Thread.sleep(500 + 200 * n); n }.count (4)
[Stage 2:> (0 + 4) / 4]
[Stage 2:==============> (1 + 3) / 4]
[Stage 2:=============================> (2 + 2) / 4]
[Stage 2:============================================> (3 + 1) / 4]
-
Make sure
spark.ui.showConsoleProgress
is
true
. It is by default. -
Disable (
OFF
) the root logger (that includes Spark’s logger) -
Make sure
org.apache.spark.SparkContext
logger is at least
WARN
. -
Run a job with 4 tasks with 500ms initial sleep and 200ms sleep chunks to see the progress bar.
简言之:
1、如果是使用idea、eclipse等ide编写代码,需要以下2步:
1) SparkSession 、SparkConf 创建之前,加入如下代码
import org.apache.log4j._
Logger.getLogger("org.apache.spark.SparkContext").setLevel(Level.WARN)
2) 创建SparkSession时设置 spark.ui.showConsoleProgress 为 true
2、如果是使用 spark-shell 则需要 如下操作:
$ ./bin/spark-shell --conf spark.ui.showConsoleProgress=true (1)
scala> sc.setLogLevel("OFF") (2)
scala> import org.apache.log4j._
import org.apache.log4j._
scala> Logger.getLogger("org.apache.spark.SparkContext").setLevel(Level.WARN) (3)
scala> sc.parallelize(1 to 4, 4).map { n => Thread.sleep(500 + 200 * n); n }.count (4)
[Stage 2:> (0 + 4) / 4]
[Stage 2:==============> (1 + 3) / 4]
[Stage 2:=============================> (2 + 2) / 4]
[Stage 2:============================================> (3 + 1) / 4]