【雷达信号处理】IQ调制理解

  • Post author:
  • Post category:其他





前言

今天学习雷达信号处理时,发现一个已调信号的形式比较特别。





s

(

t

)

=

a

(

t

)

c

o

s

[

2

π

f

0

t

+

ϕ

(

t

)

]

s(t) = a(t)cos[2{\pi}f_0t+{\phi}(t)]






s


(


t


)




=








a


(


t


)


cos


[


2



π




f










0


















t




+









ϕ



(


t


)]







在网上找也没有找到详细推导,下面来探讨这个公式是怎么来的。下面的推导仅靠个人理解推导,欢迎大家指出错误。




一、传统的调制

传统的调制就是直接将调制信号与载波进行相乘。设调制信号为




f

(

t

)

=

a

(

t

)

c

o

s

(

ϕ

(

t

)

)

f(t) = a(t)cos({\phi}(t))






f


(


t


)




=








a


(


t


)


cos


(



ϕ



(


t


))







其中



a

(

t

)

a(t)






a


(


t


)





为为信号包络,



ϕ

(

t

)

{\phi(t)}







ϕ


(


t


)






为信号相位,有





ϕ

(

t

)

=

ω

t

+

ϕ

n

(

t

)

{\phi}(t) = {\omega}t+{\phi}_n(t)







ϕ



(


t


)




=









ω



t




+










ϕ











n


















(


t


)







设载波信号



c

(

t

)

=

c

o

s

(

2

π

f

c

t

)

c(t) = cos(2{\pi}f_ct)






c


(


t


)




=








cos


(


2



π




f










c


















t


)





,那么已调信号



s

(

t

)

s(t)






s


(


t


)











s

(

t

)

=

a

(

t

)

c

o

s

(

ϕ

(

t

)

)

c

o

s

(

2

π

f

c

t

)

s(t) = a(t)cos({\phi}(t)){\bullet} cos(2{\pi}f_ct)






s


(


t


)




=








a


(


t


)


cos


(



ϕ



(


t


))







cos


(


2



π




f










c


















t


)













s

(

t

)

=

a

(

t

)

2

{

c

o

s

(

2

π

f

c

t

ϕ

(

t

)

)

+

c

o

s

(

2

π

f

c

t

+

ϕ

(

t

)

)

}

s(t) = {\frac{a(t)}{2}}{\{}cos(2{\pi}f_ct-{\phi}(t))+cos(2{\pi}f_ct+{\phi}(t)){\}}






s


(


t


)




=




















2














a


(


t


)






















{




cos


(


2



π




f










c


















t














ϕ



(


t


))




+








cos


(


2



π




f










c


















t




+









ϕ



(


t


))



}








我们应当只需要后半部分,即前面哪一项应当舍去。一般来说是通过滤波器来做的,当



ϕ

(

t

)

{\phi}(t)







ϕ



(


t


)





的频率较大才能取得较好的效果,否则很难滤除掉。那么怎么得到



s

(

t

)

=

a

(

t

)

c

o

s

[

2

π

f

c

t

+

ϕ

(

t

)

]

s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)]






s


(


t


)




=








a


(


t


)


cos


[


2



π




f










c


















t




+









ϕ



(


t


)]





这种形式呢,可以使用IQ调制



二、IQ调制





s

(

t

)

=

a

(

t

)

c

o

s

[

2

π

f

c

t

+

ϕ

(

t

)

]

s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)]






s


(


t


)




=








a


(


t


)


cos


[


2



π




f










c


















t




+









ϕ



(


t


)]





展开,有





s

(

t

)

=

a

(

t

)

c

o

s

(

2

π

f

c

t

)

c

o

s

ϕ

(

t

)

a

(

t

)

s

i

n

(

2

π

f

0

t

)

s

i

n

ϕ

(

t

)

s(t) = a(t)cos(2{\pi}f_ct){\cdot}cos{\phi}(t)-a(t)sin(2{\pi}f_0t){\cdot}sin{\phi}(t)






s


(


t


)




=








a


(


t


)


cos


(


2



π




f










c


















t


)







cos



ϕ



(


t


)













a


(


t


)


s


in


(


2



π




f










0


















t


)







s


in



ϕ



(


t


)











c

o

s

cos






cos









s

i

n

sin






s


in





是可以通过移相90度进行相互转换的。写为IQ两路,有





s

I

(

t

)

=

a

(

t

)

c

o

s

ϕ

(

t

)

s

Q

(

t

)

=

a

(

t

)

s

i

n

ϕ

(

t

)

s_I(t) = a(t)cos{\phi}(t)\\ s_Q(t) = a(t)sin{\phi}(t)







s










I


















(


t


)




=








a


(


t


)


cos



ϕ



(


t


)









s










Q


















(


t


)




=








a


(


t


)


s


in



ϕ



(


t


)










Q

Q






Q





通道为



I

I






I





通道移相90度。有





s

(

t

)

=

s

I

(

t

)

c

o

s

(

2

π

f

c

t

)

s

Q

(

t

)

s

i

n

(

2

π

f

0

t

)

s(t) = s_I(t)cos(2{\pi}f_ct)-s_Q(t)sin(2{\pi}f_0t)






s


(


t


)




=









s










I


















(


t


)


cos


(


2



π




f










c


















t


)














s










Q


















(


t


)


s


in


(


2



π




f










0


















t


)







上式完全可以理解成没有移相的调制信号



s

i

(

t

)

s_i(t)







s










i


















(


t


)





与没有移相的载波



c

o

s

(

2

π

f

c

t

)

cos(2{\pi}f_ct)






cos


(


2



π




f










c


















t


)





进行相乘,然后与移相后的调制信号



s

Q

(

t

)

s_Q(t)







s










Q


















(


t


)





与移相后的载波



s

i

n

(

2

π

f

c

t

)

sin(2{\pi}f_ct)






s


in


(


2



π




f










c


















t


)





进行相乘后的结果进行相减。

经过这样调制之后,那么就得到了



s

(

t

)

=

a

(

t

)

c

o

s

[

2

π

f

c

t

+

ϕ

(

t

)

]

s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)]






s


(


t


)




=








a


(


t


)


cos


[


2



π




f










c


















t




+









ϕ



(


t


)]





这种形式。




三、IQ解调

解调也是分为IQ两路进行解调。首先是与没有移向的载波信号



c

o

s

(

2

π

f

c

t

)

cos(2{\pi}f_ct)






cos


(


2



π




f










c


















t


)





进行相乘,即



I

I






I





通道解调,设输出为



y

I

(

t

)

y_I(t)







y










I


















(


t


)





,有





y

I

(

t

)

=

s

(

t

)

c

o

s

(

2

π

f

c

t

)

=

a

(

t

)

c

o

s

[

2

π

f

c

t

+

ϕ

(

t

)

]

c

o

s

(

2

π

f

c

t

)

y_I(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct)







y










I


















(


t


)




=








s


(


t


)


cos


(


2



π




f










c


















t


)




=








a


(


t


)


cos


[


2



π




f










c


















t




+









ϕ



(


t


)]


cos


(


2



π




f










c


















t


)













y

I

(

t

)

=

s

(

t

)

c

o

s

(

2

π

f

c

t

)

=

a

(

t

)

c

o

s

[

2

π

f

c

t

+

ϕ

(

t

)

]

c

o

s

(

2

π

f

c

t

)

y

I

(

t

)

=

a

(

t

)

2

{

c

o

s

(

4

π

f

c

t

+

ϕ

(

t

)

)

+

c

o

s

(

ϕ

(

t

)

)

}

y_I(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct)\\ y_I(t) = {\frac{a(t)}{2}}{\{}cos(4{\pi}f_ct+{\phi}(t))+cos({\phi}(t)){\}}







y










I


















(


t


)




=








s


(


t


)


cos


(


2



π




f










c


















t


)




=








a


(


t


)


cos


[


2



π




f










c


















t




+









ϕ



(


t


)]


cos


(


2



π




f










c


















t


)









y










I


















(


t


)




=




















2














a


(


t


)






















{




cos


(


4



π




f










c


















t




+









ϕ



(


t


))




+








cos


(



ϕ



(


t


))



}








经过低通滤波,再放大一倍后,有





y

I

(

t

)

=

a

(

t

)

c

o

s

(

ϕ

(

t

)

)

y_I(t) = a(t)cos({\phi}(t))







y










I


















(


t


)




=








a


(


t


)


cos


(



ϕ



(


t


))







同理,与移向后的载波信号



s

i

n

(

2

π

f

c

t

)

sin(2{\pi}f_ct)






s


in


(


2



π




f










c


















t


)





进行相乘,即



Q

Q






Q





通道解调,设输出为



y

Q

(

t

)

y_Q(t)







y










Q


















(


t


)









y

Q

(

t

)

=

s

(

t

)

s

i

n

(

2

π

f

c

t

)

=

a

(

t

)

c

o

s

[

2

π

f

c

t

+

ϕ

(

t

)

]

s

i

n

(

2

π

f

c

t

)

y

Q

(

t

)

=

a

(

t

)

2

{

s

i

n

(

4

π

f

c

t

+

ϕ

(

t

)

)

s

i

n

(

ϕ

(

t

)

)

}

y_Q(t) = s(t)sin(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]sin(2{\pi}f_ct)\\ y_Q(t) = {\frac{a(t)}{2}}{\{}sin(4{\pi}f_ct+{\phi}(t))-sin({\phi}(t)){\}}







y










Q


















(


t


)




=








s


(


t


)


s


in


(


2



π




f










c


















t


)




=








a


(


t


)


cos


[


2



π




f










c


















t




+









ϕ



(


t


)]


s


in


(


2



π




f










c


















t


)









y










Q


















(


t


)




=




















2














a


(


t


)






















{




s


in


(


4



π




f










c


















t




+









ϕ



(


t


))













s


in


(



ϕ



(


t


))



}








再低通滤波,放大两倍再反向后有





y

Q

(

t

)

=

a

(

t

)

s

i

n

(

ϕ

(

t

)

)

y_Q(t) = a(t)sin({\phi}(t))







y










Q


















(


t


)




=








a


(


t


)


s


in


(



ϕ



(


t


))







IQ解调就完成了



四、IQ解调的优点

经过解调后,有





y

I

(

t

)

=

a

(

t

)

c

o

s

(

ϕ

(

t

)

)

y

Q

(

t

)

=

a

(

t

)

s

i

n

(

ϕ

(

t

)

)

y_I(t) = a(t)cos({\phi}(t))\\ y_Q(t) = a(t)sin({\phi}(t))







y










I


















(


t


)




=








a


(


t


)


cos


(



ϕ



(


t


))









y










Q


















(


t


)




=








a


(


t


)


s


in


(



ϕ



(


t


))







有包络



a

(

t

)

a(t)






a


(


t


)











a

(

t

)

=

y

I

(

t

)

2

+

y

Q

(

t

)

2

a(t) = {\sqrt{y_I(t)^2+y_Q(t)^2}}






a


(


t


)




=


















y










I


















(


t



)










2











+





y










Q


















(


t



)










2





































有相位



ϕ

(

t

)

{\phi}(t)







ϕ



(


t


)











ϕ

(

t

)

=

a

r

c

t

a

n

(

y

Q

(

t

)

y

I

(

t

)

)

{\phi}(t) = arctan({\frac{y_Q(t)}{y_I(t)}})







ϕ



(


t


)




=








a


rc


t


an


(















y










I


















(


t


)















y










Q


















(


t


)





















)







可见,



I

Q

IQ






I


Q





解调能同时获得解调信号的包络和相位。

对于普通解调,设接收信号



s

(

t

)

=

a

(

t

)

c

o

s

[

2

π

f

c

t

+

ϕ

(

t

)

]

s(t) = a(t)cos[2{\pi}f_ct+{\phi}(t)]






s


(


t


)




=








a


(


t


)


cos


[


2



π




f










c


















t




+









ϕ



(


t


)]





,那么解调后输出信号为



R

(

t

)

R(t)






R


(


t


)





,有





R

(

t

)

=

s

(

t

)

c

o

s

(

2

π

f

c

t

)

=

a

(

t

)

c

o

s

[

2

π

f

c

t

+

ϕ

(

t

)

]

c

o

s

(

2

π

f

c

t

)

R

(

t

)

=

a

(

t

)

2

{

c

o

s

(

4

π

f

c

t

+

ϕ

(

t

)

)

+

c

o

s

(

ϕ

(

t

)

)

}

R(t) = s(t)cos(2{\pi}f_ct)= a(t)cos[2{\pi}f_ct+{\phi}(t)]cos(2{\pi}f_ct)\\ R(t) = {\frac{a(t)}{2}}{\{}cos(4{\pi}f_ct+{\phi}(t))+cos({\phi}(t)){\}}






R


(


t


)




=








s


(


t


)


cos


(


2



π




f










c


















t


)




=








a


(


t


)


cos


[


2



π




f










c


















t




+









ϕ



(


t


)]


cos


(


2



π




f










c


















t


)








R


(


t


)




=




















2














a


(


t


)






















{




cos


(


4



π




f










c


















t




+









ϕ



(


t


))




+








cos


(



ϕ



(


t


))



}








经过低通滤波,再放大一倍后,有





y

I

(

t

)

=

a

(

t

)

c

o

s

(

ϕ

(

t

)

)

y_I(t) = a(t)cos({\phi}(t))







y










I


















(


t


)




=








a


(


t


)


cos


(



ϕ



(


t


))







经过包络检波,可以获得包络



a

(

t

)

a(t)






a


(


t


)





,然而相位就很难获得了。




总结

看个图吧

在这里插入图片描述



版权声明:本文为wing_man原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。