leetcode刷题(柠檬水找零、接雨水、宝石与石头、将数组和减半的最少操作次数、更新数组后处理求和查询、删除每行中的最大值、并行课程③)

  • Post author:
  • Post category:其他



目录


1、柠檬水找零


2、接雨水


3、宝石与石头


4、将数组和减半的最少操作次数


5、更新数组后处理求和查询


6、删除每行中的最大值


7、并行课程③


1、柠檬水找零

class Solution:
    def lemonadeChange(self, bills: List[int]) -> bool:
        dollars = [0, 0]    # 美元数组,第一个数字记录5美元的数量,第二个数字记录10美元的数量
        for bi in bills:
            if bi == 5:
                dollars[0] += 1     # 顾客给了5美元,无需找零,5美元数量加一
            elif bi == 10:
                if dollars[0] < 1: return False     # 顾客给了10美元,但没有5美元的零钱找,无法找零
                dollars[0] -= 1     # 可以找零,5美元数量减一
                dollars[1] += 1     # 10美元数量加一
            else:
                if dollars[1] > 0 and dollars[0] > 0:
                    # 20美元优先用一张10美元和一张5美元找零
                    dollars[0] -= 1
                    dollars[1] -= 1
                elif dollars[0] >= 3:
                    # 否则用三张5美元找零
                    dollars[0] -= 3
                else:
                    # 否则无法找零
                    return False
        return True

2、接雨水

class Solution:
    def trap(self, height: List[int]) -> int:
        n = len(height)
        left_max = [0] * n          # 位置i左侧(包含i)大于等于height[i]的最大值
        right_max = [0] * n         # 位置i右侧(包含i)大于等于height[i]的最大值
        left_max[0] = height[0]     # 最左侧的端点的最大值为它本身
        right_max[-1] = height[-1]  # 最右侧的端点的最大值为它本身
        for i in range(1, n):
            # 同时生成两个数组
            left_max[i] = max(left_max[i - 1], height[i])
            right_max[-(i + 1)] = max(right_max[-i], height[-(i + 1)])
        ans = 0
        for l, r, h in zip(left_max, right_max, height):
            ans += min(l, r) - h    # 位置i的雨水量取决于两侧最大值中的较小值与height[i]的差
        return ans

3、宝石与石头

class Solution:
    def numJewelsInStones(self, jewels: str, stones: str) -> int:
        count = 0
        for s in stones:
            if s in jewels:
                count += 1
        return count

4、将数组和减半的最少操作次数

class Solution:
    def halveArray(self, nums: List[int]) -> int:
        sum1 = sum(nums)          #首先利用sum函数将数组元素求和
        target = sum1 / 2         #其次算出要得到的目标值,即原数组和的一半
        queue = []                #定义一个优先权队列备用
        for num in nums:
            heapq.heappush(queue, -num)       #heapq实现的是最小堆,在本题中要实现最大堆,将元素取法异曲同工
        count = 0                #记录减少一半的次数
        while sum1 > target:
            num = heapq.heappop(queue) / 2       #heappop取出来的是堆顶,此时是负数,将其变为一半
            sum1 += num                  #因为是取的相反数,所以此处直接相加即为在原数组和上减去这个值的一半
            heapq.heappush(queue, num)        #最大元素减半以后放回队列
            count += 1
        return count
# import heapq
# queue = []
# nums = [12, 34, 1, 5]
# for num in nums:
#     heapq.heappush(queue, num)
# print(queue)
# a = heapq.heappop(queue)
# print(a)

#这是对于heapq.push和heapq.pop用法解释
#最终输出queue为[1,5,12,34], a为1

5、更新数组后处理求和查询

class Node:
    def __init__(self):
        self.l = self.r = 0
        self.s = self.lazy = 0


class SegmentTree:
    def __init__(self, nums):
        self.nums = nums
        n = len(nums)
        self.tr = [Node() for _ in range(n << 2)]
        self.build(1, 1, n)

    def build(self, u, l, r):
        self.tr[u].l, self.tr[u].r = l, r
        if l == r:
            self.tr[u].s = self.nums[l - 1]
            return
        mid = (l + r) >> 1
        self.build(u << 1, l, mid)
        self.build(u << 1 | 1, mid + 1, r)
        self.pushup(u)

    def modify(self, u, l, r):
        if self.tr[u].l >= l and self.tr[u].r <= r:
            self.tr[u].lazy ^= 1
            self.tr[u].s = self.tr[u].r - self.tr[u].l + 1 - self.tr[u].s
            return
        self.pushdown(u)
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        if l <= mid:
            self.modify(u << 1, l, r)
        if r > mid:
            self.modify(u << 1 | 1, l, r)
        self.pushup(u)

    def query(self, u, l, r):
        if self.tr[u].l >= l and self.tr[u].r <= r:
            return self.tr[u].s
        self.pushdown(u)
        mid = (self.tr[u].l + self.tr[u].r) >> 1
        res = 0
        if l <= mid:
            res += self.query(u << 1, l, r)
        if r > mid:
            res += self.query(u << 1 | 1, l, r)
        return res

    def pushup(self, u):
        self.tr[u].s = self.tr[u << 1].s + self.tr[u << 1 | 1].s

    def pushdown(self, u):
        if self.tr[u].lazy:
            mid = (self.tr[u].l + self.tr[u].r) >> 1
            self.tr[u << 1].s = mid - self.tr[u].l + 1 - self.tr[u << 1].s
            self.tr[u << 1].lazy ^= 1
            self.tr[u << 1 | 1].s = self.tr[u].r - mid - self.tr[u << 1 | 1].s
            self.tr[u << 1 | 1].lazy ^= 1
            self.tr[u].lazy ^= 1


class Solution:
    def handleQuery(
        self, nums1: List[int], nums2: List[int], queries: List[List[int]]
    ) -> List[int]:
        tree = SegmentTree(nums1)
        s = sum(nums2)
        ans = []
        for op, a, b in queries:
            if op == 1:
                tree.modify(1, a + 1, b + 1)
            elif op == 2:
                s += a * tree.query(1, 1, len(nums1))
            else:
                ans.append(s)
        return ans

6、删除每行中的最大值

class Solution:
    def deleteGreatestValue(self, grid: List[List[int]]) -> int:
        for row in grid:
            row.sort()  # 对每一行进行排序
        score = 0       # 分数初始为0
        for j in range(len(grid[0])):
            col_max_val = grid[0][j]    # 初始化每一列最大值为该列首行的值
            for i in range(len(grid)):
                col_max_val = max(grid[i][j], col_max_val)  # 找到每一列的最大值
            score += col_max_val
        return score

7、并行课程③

class Solution:
    def minimumTime(self, n: int, relations: List[List[int]], time: List[int]) -> int:
        g = defaultdict(list)
        indeg = [0] * n
        for a, b in relations:
            g[a - 1].append(b - 1)
            indeg[b - 1] += 1
        q = deque()
        f = [0] * n
        ans = 0
        for i, (v, t) in enumerate(zip(indeg, time)):
            if v == 0:
                q.append(i)
                f[i] = t
                ans = max(ans, t)
        while q:
            i = q.popleft()
            for j in g[i]:
                f[j] = max(f[j], f[i] + time[j])
                ans = max(ans, f[j])
                indeg[j] -= 1
                if indeg[j] == 0:
                    q.append(j)
        return ans



版权声明:本文为Starinfo原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。