Gym – 101667H – Rock Paper Scissors (FFT)

  • Post author:
  • Post category:其他




Rock Paper Scissors


题目链接:


Rock Paper Scissors


Gym – 101667H



题意

给你两个串,长度分别为n,m。每个串由三个字符组成’R’,‘P’,‘S’,分别代表着石头剪刀布,第一个串代表是机器出的,第二个串代表是你出的,现在,你已知了机器出的顺序,可以跳过任意个,但是一旦开始就必须进行到比赛结束,所以,问最多赢几盘?


数据范围:




1

<

m

<

n

<

1

e

5

1<m<n<1e5






1




<








m




<








n




<








1


e


5







思路

这题可以先转换一下,将现在的第二个串转化成能够打败的串,所以,这样就只需要进行模式匹配即可。

但是,我们现在已有的模式匹配算法莫过于经典的KMP,但是,这一系列算法只能求连续最长子串。无法忽略中间的一些字符。

那DP可不可以,也不行,当前的信息,无法将状态转移到下一个。

最后,看了大神的博客,FFT?!!!

豁然开朗,在求一段匹配时,与卷积的形式非常像。





C

k

=

i

=

0

,

j

=

0

,

i

+

j

=

k

a

i

b

k

x

i

C_k = \sum_{i=0,j=0,i+j=k} a_ib_kx^i







C










k




















=

















i


=


0


,


j


=


0


,


i


+


j


=


k






























a










i



















b










k



















x










i












这一段匹配代表着



a

0

a_0







a










0

























b

k

b_k







b










k





















,



a

1

a_1







a










1

























b

k

1

b_{k-1}







b











k





1






















…的匹配,那么我们只需将第二个串反转一下,这样代表的就是两个串的匹配字母个数。

我们再用三个字母分别做一次匹配加起来即可。




代码

#include<bits/stdc++.h>
using namespace std;
#define debug(x) cerr<<#x<<':'<<x<<" ";
const int maxn = 4e5+7;
typedef complex<double> C;
C wn(int n, int f) {
    return C(cos(acos(-1.0) / n), f*sin((acos(-1.0)) / n));
}
C inv(int n) {
    return C(1.0 / n, 0);
}
C as[maxn], bs[maxn], cs[maxn];
C ar[maxn], br[maxn], cr[maxn];
C ap[maxn], bp[maxn], cp[maxn];

int g[maxn];
void FFT(C *a, int n, int f) {
    for (int i = 0; i < n; i++) if (i > g[i]) swap(a[i], a[g[i]]);
    for (int i = 1; i < n; i <<= 1) {
        C w = wn(i, f), x, y;
        for (int j = 0; j < n; j += i + i) {
            C e;
            e = 1;
            for (int k = 0; k < i; e = e * w, k++) {
                x = a[j + k];
                y = a[j + k + i] * e;
                a[j + k] = x + y;
                a[j + k + i] = x - y;
            }
        }
    }
    if (f == -1) {
        C Inv = inv(n);
        for (int i = 0; i < n; i++) a[i] = a[i] * Inv;
    }
}
void conv(C *a, int n, C *b, int m, C *c) {
    int k = 0, s = 2;
    while ((1 << k) < max(n, m) + 1) k++, s <<= 1;
    for (int i = 1; i < s; i++) g[i] = (g[i / 2] / 2) | ((i & 1) << k);
    FFT(a, s, 1);
    FFT(b, s, 1);
    for (int i = 0; i < s; i++) c[i] = a[i] * b[i];
    FFT(c, s, -1);
}

char str[maxn];
char ptr[maxn];

int main()
{
    int len1,len2;
    scanf("%d %d",&len1,&len2);
    scanf("%s %s",str,ptr);
    for (int i = 0;i < len2;i ++) {
        if (ptr[i] == 'S') ptr[i] = 'P';
        else if (ptr[i] == 'P') ptr[i] = 'R';
        else if (ptr[i] == 'R') ptr[i] = 'S';
    }
    reverse(ptr,ptr+len2);

    int n, m; n = len1,m = len2;
    for (int i = 0; i < n; i++) as[i] = str[i]=='S'?1.0:0.0;
    for (int i = 0; i < m; i++) bs[i] = ptr[i]=='S'?1.0:0.0;
    conv(as, n, bs, m, cs);
    for (int i = 0; i < n; i++) ap[i] = str[i]=='P'?1.0:0.0;
    for (int i = 0; i < m; i++) bp[i] = ptr[i]=='P'?1.0:0.0;
    conv(ap, n, bp, m, cp);
    for (int i = 0; i < n; i++) ar[i] = str[i]=='R'?1.0:0.0;
    for (int i = 0; i < m; i++) br[i] = ptr[i]=='R'?1.0:0.0;
    conv(ar, n, br, m, cr);

    int mx = -1;
    for (int i = m-1; i < n+m-1; i++) {
        mx = max(mx,(int)(cs[i].real()+0.5) + (int)(cp[i].real()+0.5) + (int)(cr[i].real()+0.5));
    }
    printf("%d\n",mx);
}



版权声明:本文为qq_40513946原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。