SSIM的原理这里就不阐述了,直接上代码:
from math import exp
import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
import cv2
def ssim(image1, image2, K, window_size, L):
_, channel1, _, _ = image1.size()
_, channel2, _, _ = image2.size()
channel = min(channel1, channel2)
# gaussian window generation
sigma = 1.5 # default
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
_1D_window = (gauss/gauss.sum()).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
# define constants
# * L = 255 for constants doesn't produce meaningful results; thus L = 1
# C1 = (K[0]*L)**2;
# C2 = (K[1]*L)**2;
C1 = K[0]**2;
C2 = K[1]**2;
mu1 = F.conv2d(image1, window, padding = window_size//2, groups = channel)
mu2 = F.conv2d(image2, window, padding = window_size//2, groups = channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1*mu2
sigma1_sq = F.conv2d(image1*image1, window, padding = window_size//2, groups = channel) - mu1_sq
sigma2_sq = F.conv2d(image2*image2, window, padding = window_size//2, groups = channel) - mu2_sq
sigma12 = F.conv2d(image1*image2, window, padding = window_size//2, groups = channel) - mu1_mu2
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
if __name__=="__main__":
# opencv image load
I1 = cv2.imread('./sample.jpg')
I2 = cv2.imread('./blur4.jpg')
# I2 = cv2.imread('./blur.png')
#I2 = cv2.resize(I2, I1.shape[0:2])
# print(I1.shape, I2.shape) # returns (256,256,3)
# tensors
I1 = torch.from_numpy(np.rollaxis(I1, 2)).float().unsqueeze(0)/255.0
I2 = torch.from_numpy(np.rollaxis(I2, 2)).float().unsqueeze(0)/255.0
# print(I1.size(), I2.size()) # returns torch([1,3,256,256])
# tensor.autograd.Variable (Automatic differentiation variable)
I1 = Variable(I1, requires_grad = True)
I2 = Variable(I2, requires_grad = True)
# default constants
K = [0.01, 0.03]
L = 255;
window_size = 11
ssim_value = ssim(I1, I2, K, window_size, L)
print(ssim_value.data)
版权声明:本文为qq_41562735原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。