Linux设备树语法详解

  • Post author:
  • Post category:linux



转载地址:https://www.linuxidc.com/Linux/2016-12/137986.htm


Linux内核从3.x开始引入设备树的概念,用于实现


驱动代码与设备信息相分离


。在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写。引入了设备树之后,驱动代码只负责处理驱动的逻辑,而关于设备的具体信息存放到设备树文件中,这样,如果只是硬件接口信息的变化而没有驱动逻辑的变化,驱动开发者只需要修改设备树文件信息,不需要改写驱动代码。比如在ARM Linux内,一个

.dts(device tree source)文件

对应一个ARM的machine,一般放置在内核的

“arch/arm/boot/dts/”

目录内,比如exynos4412参考板的板级设备树文件就是

“arch/arm/boot/dts/exynos4412-origen.dts”

。这个文件可以通过


$make dtbs

命令

编译成二进制的

.dtb文件

供内核驱动使用。


基于同样的软件分层设计的思想,由于一个SoC可能对应多个machine,如果每个machine的设备树都写成一个完全独立的

.dts文件

,那么势必相当一些

.dts

文件有重复的部分,为了解决这个问题,Linux设备树目录把一个SoC公用的部分或者多个machine共同的部分提炼为相应的

.dtsi文件

。这样每个

.dts

就只有自己差异的部分,公有的部分只需要

“include”相应的.dtsi文件

, 这样就是整个设备树的管理更加有序。我这里用`Linux4.8.5源码自带的dm9000网卡为例来分析设备树的使用和移植。这个网卡的设备树节点信息在

“Documentation/devicetree/bindings/net/davicom-dm9000.txt”

有详细说明,其网卡驱动源码是

“drivers/net/ethernet/davicom/dm9000.c”



设备树框架


设备树用树状结构描述设备信息,它有以下几种特性


  1. 每个设备树文件都有一个根节点,每个设备都是一个节点。

  2. 节点间可以嵌套,形成父子关系,这样就可以方便的描述设备间的关系。

  3. 每个设备的属性都用一组key-value对(键值对)来描述。

  4. 每个属性的描述用

    ;

    结束


所以,一个设备树的基本框架可以写成下面这个样子

/{                                  //根节点
    node1{                          //node1是节点名,是/的子节点
        key=value;                  //node1的属性
        ...
        node2{                      //node2是node1的子节点
            key=value;              //node2的属性
            ...
        }
    }                               //node1的描述到此为止
    node3{
        key=value;
        ...
    }
}


节点名


理论个节点名只要是长度不超过31个字符的ASCII字符串即可,此外

Linux内核还约定设备名应写成形如

<name>[@<unit_address>]

的形式,其中name就是设备名,unit_address就是设备地址,如果有应该写上,下面就是典型节点名的写法


Linux中的设备树还包括几个特殊的节点,比如chosen,chosen节点不描述一个真实设备,而是用于firmware传递一些数据给OS,比如bootloader传递内核启动参数给内核


引用


当我们找一个节点的时候,我们必须书写

完整的节点路径

,这样当一个节点嵌套比较深的时候就不是很方便,所以,设备树允许我们用下面的形式为节点标注引用(起别名),借以省去冗长的路径。这样就可以实现类似函数调用的效果。编译设备树的时候,相同的节点的不同属性信息都会被合并到设备节点中,而相同的属性会被覆盖,使用引用可以避免移植者四处找节点,直接在板级.dts增改即可。



下面的例子中就是直接引用了dtsi中的一个节点,并向其中添加/修改新的属性信息


KEY


在设备树中,

键值对

是描述属性的方式,比如,Linux驱动中可以通过设备节点中的

“compatible”

这个属性查找设备节点。

Linux设备树语法中定义了一些具有规范意义的属性,包括:

compatible

,

address

,

interrupt

等,这些信息能够在内核初始化找到节点的时候,自动解析生成相应的设备信息。此外,还有一些Linux内核定义好的,一类设备通用的有默认意义的属性,这些属性一般不能被内核自动解析生成相应的设备信息,但是内核已经编写的相应的解析提取函数,常见的有

“mac_addr”



“gpio”



“clock”



“power”



“regulator”

等等。


compatible


设备节点中对应的节点信息已经被内核构造成

struct platform_device

。驱动可以通过相应的函数从中提取信息。

compatible属性是用来查找节点的方法之一,另外还可以通过节点名或节点路径查找指定节点

。dm9000驱动中就是使用下面这个函数通过设备节点中的

“compatible”

属性提取相应的信息,所以二者的字符串需要严格匹配。







address


(几乎)所有的设备都需要与CPU的IO口相连,所以其IO端口信息就需要在设备节点节点中说明。常用的属性有



  • #address-cells

    ,用来描述

    子节点

    “reg”

    属性的地址表中用来描述首地址的cell的数量




  • #size-cells

    ,用来描述

    子节点

    “reg”

    属性的地址表中用来描述地址长度的cell的数量



有了这两个属性,子节点中的

“reg”

就可以描述一块连续的地址区域。下例中,父节点中指定了”#address-cells = <2>” “#size-cells = <1>”,则子节点dev-bootscs0中的reg中的前两个数表示一个地址,最后的0x4表示地址跨度是0x4


interrupts


一个计算机系统中大量设备都是通过中断请求CPU服务的,所以设备节点中就需要在指定中断号。常用的属性有



  • interrupt-controller

    一个空属性用来声明这个node接收中断信号


  • #interrupt-cells

    ,是中断控制器节点的属性,用来标识这个控制器需要几个单位做中断描述符,用来描述

    子节点中

    “interrupts”

    属性使用了父节点中的

    interrupts

    属性的具体的哪个值

    。一般,如果父节点的该属性的值是3,则子节点的interrupts一个cell的三个32bits整数值分别为:<中断域 中断 触发方式>,如果父节点的该属性是2,则是<中断 触发方式>


  • interrupt-parent

    ,标识此设备节点属于哪一个中断控制器,如果没有设置这个属性,会自动依附父节点的


  • interrupts

    ,一个中断标识符列表,表示每一个中断输出信号


这里,在我板子上的dm9000的的设备节点中,

“interrupt-parent”

使用了exynos4x12-pinctrl.dtsi(被板级设备树的exynos4412.dtsi包含)中的gpx0节点的引用,而在gpx0节点中,指定了

“#interrupt-cells = <2>;”

,所以在dm9000中的属性

“interrupts = <6 4>;”

表示指定gpx0中的属性

“interrupts”

中的

“<0 22 0>”

,通过查阅exynos4412的手册知道,对应的中断号是EINT[6]。


gpio


gpio也是最常见的IO口,常用的属性有



  • “gpio-controller”

    ,用来说明该节点描述的是一个gpio控制器


  • “#gpio-cells”

    ,用来描述gpio使用节点的属性一个cell的内容,即

    属性 = <&引用GPIO节点别名 GPIO标号 工作模式>


驱动自定义key


针对具体的设备,有部分属性很难做到通用,需要驱动自己定义好,通过内核的属性提取解析函数进行值的获取,比如dm9000节点中的下面这句就是自定义的节点属性,用以表示配置EEPROM不可用。




VALUE



dts描述一个键的值有多种方式,当然,一个键也可以没有值


字符串信息


32bit无符号整型数组信息


二进制数数组


字符串哈希表


混合形式


上述几种的混合形式


设备树/驱动移植


设备树就是为驱动服务的,配置好设备树之后还需要配置相应的驱动才能检测配置是否正确。比如dm9000网卡,就需要首先将示例信息挂接到我们的板级设备树上,并根据芯片手册和电路原理图将相应的属性进行配置,再配置相应的驱动。需要注意的是,dm9000的地址线一般是接在片选线上的,我这里用的exynos4412,接在了bank1,所以是

“<0x50000000 0x2 0x50000004 0x2>”


最终的配置结果是:


勾选相应的选项将dm9000的驱动编译进内核。

make menuconfig
[*] Networking support  --->
    Networking options  --->
        <*> Packet socket
        <*>Unix domain sockets 
        [*] TCP/IP networking
        [*]   IP: kernel level autoconfiguration
Device Drivers  --->
    [*] Network device support  --->
        [*]   Ethernet driver support (NEW)  --->
            <*>   DM9000 support
File systems  --->
    [*] Network File Systems (NEW)  --->
        <*>   NFS client support
        [*]     NFS client support for NFS version 3
        [*]       NFS client support for the NFSv3 ACL protocol extension
        [*]   Root file system on NFS


执行

make uImage;make dtbs

,tftp下载,成功加载nfs根文件系统并进入系统,表示网卡移植成功