MySQL最左匹配原则

  • Post author:
  • Post category:mysql




阐述

通常我们在建立联合索引的时候,相信建立过索引的同学们会发现,无论是Oracle 还是 MySQL 都会让我们选择索引的顺序,比如我们想在

a,b,c

三个字段上建立一个联合索引,我们可以选择自己想要的优先级,

(a、b、c)

,或是

(b、a、c)

或者是

(c、a、b)

等顺序。

在这里插入图片描述

为什么数据库会让我们选择字段的顺序呢?

不都是三个字段的联合索引么?

这里就引出了数据库索引的最重要的原则之一,最左匹配原则。

在我们开发中经常会遇到这种问题,明明这个字段建了联合索引,但是SQL查询该字段时却不会使用这个索引。难道这索引是假的?

比如索引

abc_index:(a,b,c)



a,b,c

三个字段的联合索引,下列 sql 执行时都无法命中索引

abc_index

select * from table where c = '1';

select * from table where b ='1' and c ='2';

以下三种情况却会走索引:

select * from table where a = '1';

select * from table where a = '1' and b = '2';

select * from table where a = '1' and b = '2'  and c='3';

从上面两个例子大家有木有看出点眉目呢?

是的,索引

abc_index:(a,b,c)

,只会在 where 条件中带有

(a)、(a,b)、(a,b,c)

的三种类型的查询中使用。

其实这里说的有一点歧义,其实当 where 条件只有

(a,c)

时也会走,但是只走a字段索引,不会走 c 字段。

那么这都是为什么呢?

我们一起来看看其原理吧。



一、最左匹配原则的原理

MySQL 建立多列索引(联合索引)有最左匹配的原则,即最左优先:

如果有一个 2 列的索引 (a, b),则已经对 (a)、(a, b) 上建立了索引;

如果有一个 3 列索引 (a, b, c),则已经对 (a)、(a, b)、(a, b, c) 上建立了索引;

假设数据表

LOL (id,sex,price,name)

的物理位置(表中的无序数据)如下:

(注:下面数据是测试少量数据选用的,只为了方便大家看清楚。实际操作中,应按照使用频率、数据区分度来综合设定索引顺序喔~)

主键id  sex(a)   price(b)      name(c)    
(1)     1         1350         AAA安妮
(2)     2         6300         MMM盲僧
(3)     1         3150         NNN奈德丽
(4)     2         6300         CCC锤石
(5)     1         6300         LLL龙女
(6)     2         3150         EEE伊泽瑞尔
(7)     2         6300         III艾克
(8)     1         6300         BBB暴走萝莉
(9)     1         4800         FFF发条魔灵
(10)    2         3150         KKK卡牌大师
(11)    1         450          HHH寒冰射手
(12)    2         450          GGG盖伦
(13)    2         3150         OOO小提莫
(14)    2         3150         DDD刀锋之影
(15)    2         6300         JJJ疾风剑豪
(16)    2         450          JJJ剑圣

当你在 LOL 表创建一个联合索引

abc_index:(sex,price,name)

时,生成的

索引文件逻辑上等同于下表内容(分级排序)

sex(a)   price(b)       name(c)         主键id
1        450            HHH寒冰射手      (11)
1        1350           AAA安妮          (1)
1        3150           NNN奈德丽        (3)
1        4800           FFF发条魔灵       (9)
1        6300           BBB暴走萝莉       (8)
1        6300           LLL龙女          (5)
2        450            GGG盖伦          (12)
2        450            JJJ剑圣          (16)
2        3150           DDD刀锋之影       (14)
2        3150           EEE伊泽瑞尔       (6)
2        3150           KKK卡牌大师       (10)
2        3150           OOO小提莫         (13)
2        6300           CCC锤石          (4)
2        6300           III艾克          (7)
2        6300           JJJ疾风剑豪       (15)
2        6300           MMM盲僧          (2)

小伙伴儿们有没有发现B+树联合索引的规律?

感觉还有点模糊的话,那咱们再来看一张索引存储数据的结构图,或许更明了一些。

在这里插入图片描述

B+树中的联合索引,每级索引都是排好序的。

联合索引 bcd_index:(b,c,d) , 在索引树中的样子如图 , 在比较的过程中 ,先判断 b 再判断 c 然后是 d 。

由上图可以看出,B+ 树的数据项是复合的数据结构,同样,对于我们这张表的联合索引 (sex,price,name)来说 ,B+ 树也是按照从左到右的顺序来建立搜索树的,当SQL如下时:

select sex,price,name from LOL 
where sex = 2 
and price = 6300 
and name = 'JJJ疾风剑豪'; 

B+ 树会优先比较 sex 来确定下一步的指针所搜方向,如果 sex 相同再依次比较 price 和 name,最后得到检索的数据;



二、违背最左原则导致索引失效的情况

(下面以联合索引 abc_index:(a,b,c) 来进行讲解,便于理解)

1、查询条件中,缺失优先级最高的索引 “a”

当 where b = 6300 and c = ‘JJJ疾风剑豪’ 这种没有以 a 为条件来检索时;B+树就不知道第一步该查哪个节点,从而需要去全表扫描了(即不走索引)。

因为建立搜索树的时候 a 就是第一个比较因子,必须要先根据 a 来搜索,进而才能往后继续查询b 和 c,这点我们通过上面的存储结构图可以看明白。

2、查询条件中,缺失优先级居中的索引 “b”

当 where a =1 and c =“JJJ疾风剑豪” 这样的数据来检索时;B+ 树可以用 a 来指定第一步搜索方向,但由于下一个字段 b 的缺失,所以只能把 a = 1 的数据主键ID都找到,通过查到的主键ID回表查询相关行,再去匹配 c = ‘JJJ疾风剑豪’ 的数据了,当然,这至少把 a = 1 的数据筛选出来了,总比直接全表扫描好多了。

这就是MySQL非常重要的原则,即索引的最左匹配原则。



三、查询优化器偷偷干了哪些事儿

当对索引中所有列通过 “=” 或 “IN” 进行精确匹配时,索引都可以被用到。

1、如果建的索引顺序是 (a, b)。而查询的语句是 where b = 1 AND a = ‘aaa’; 为什么还能利用到索引?

理论上索引对顺序是敏感的,但是由于 MySQL 的查询优化器会自动调整 where 子句的条件顺序以使用适合的索引,所以 MySQL 不存在 where 子句的顺序问题而造成索引失效。当然了,SQL书写的好习惯要保持,这也能让其他同事更好地理解你的SQL。

2、还有一个特殊情况说明下,下面这种类型的SQL, a 与 b 会走索引,c不会走。

select * from LOL 
where a = 2 and b > 1000  
and c='JJJ疾风剑豪';

对于上面这种类型的sql语句;

mysql会一直向右匹配直到遇到范围查询

(>、<、between、like)

就停止匹配(包括like ‘陈%’这种)。

在a、b走完索引后,c已经是无序了,所以c就没法走索引,优化器会认为还不如全表扫描c字段来的快。所以只使用了(a,b)两个索引,影响了执行效率。

其实,这种场景可以通过修改索引顺序为 abc_index:(a,c,b),就可以使三个索引字段都用到索引,建议小伙伴们不要有问题就想着新增索引哦,浪费资源还增加服务器压力。

综上,如果通过调整顺序,就可以解决问题或少维护一个索引,那么这个顺序往往就是我们DBA人员需要优先考虑采用的。



四、知识点

1、如何通过有序索引排序,避免冗余执行 order by

order by 用在 select 语句中,具备排序功能。如:

SELECT sex, price, name FROM LOL ORDER BY sex;

是将表 LOL 中的数据按 “sex” 一列排序。

而只有当 order by 与 where 语句同时出现,order by 的排序功能无效。

换句话说,order by 中的字段在执行计划中利用了索引时,不用排序操作。如下SQL时,不会按 sex 一列排序,因为 sex 本身已经是有序的了。

SELECT sex, price, name FROM LOL where sex = 1 ORDER BY sex ;

所以,只有 order by 字段出现在 where 条件中时,才会利用该字段的索引而避免排序。

对于上面的语句,数据库的处理顺序是:

第一步:根据 where 条件和统计信息生成执行计划,得到数据。

第二步:将得到的数据排序。当执行处理数据(order by)时,数据库会先查看第一步的执行计划,看 order by 的字段是否在执行计划中利用了索引。如果是,则可以利用索引顺序而直接取得已经排好序的数据。如果不是,则排序操作。

第三步:返回排序后的数据。

2、like 语句的索引问题

如果通配符 % 不出现在开头,则可以用到索引,但根据具体情况不同可能只会用其中一个前缀,在 like “value%” 可以使用索引,但是 like “%value%” 违背了最左匹配原则,不会使用索引,走的是全表扫描。

3、不要在列上进行运算

如果查询条件中含有函数或表达式,将导致索引失效而进行全表扫描

例如 :

select * from user where YEAR(birthday) < 1990

可以改造成:

 select * from users where birthday <1990-01-01

4、索引不会包含有 NULL 值的列

只要列中包含有 NULL 值都将不会被包含在索引中,复合索引中只要有一列含有 NULL 值,那么这一列对于此复合索引就是无效的。所以在数据库设计时不要让字段的默认值为 NULL

5、尽量选择区分度高的列作为索引

区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是 1,而一些状态、性别字段可能在大数据面前区分度就是 0。一般需要 join 的字段都要求区分度 0.1 以上,即平均 1 条扫描 10 条记录

6、覆盖索引的好处

如果一个索引包含所有需要的查询的字段的值,我们称之为覆盖索引。覆盖索引是非常有用的工具,能够极大的提高性能。因为,只需要读取索引,而无需读表,极大减少数据访问量,这也是不建议使用Select * 的原因。



五、MySQL 为什么是最左匹配原则而不是最右匹配原则

最硬的回答:

首先最右匹配原则索引就失效了。

联合索引的索引树是以左边第一个字段作为非叶子节点,按照顺序进行放置。

对于相同的字段如 student_id,它会按照 score 来排序,如果还有第三个字段,那么 score 相同数据,就会再按照第三个字段排序,以此类推。



MySQL组合索引“最左前缀”原则,指的是MySQL只能高效地使用索引的最左前缀列。

所以,在多列索引中索引列的顺序至关重要。


如果不是按照索引的最左列开始查找,则无法使用索引。

例如,你在用户表上创建了一个多列索引

t_index(sex,age)

,如果你这个时候没有查找某个特定的性别,这个索引时无法使用的。


为什么不是最右或者是其他方向的匹配原则呢?

这还是要从我们的索引树说起。

我们先来明确一个概念,

那就是联合索引。

联合索引就是指,由两个或以上的字段共同构成一个索引。

之前我们举的例子都是单个字段的索引,那么多个字段的联合索引是什么样的,也就是联合索引的索引树是什么样的呢?

是一棵树还是多棵树呢?

答案是

一棵B+Tree。


联合索引

的索引树是以

左边第一个字段

作为非叶子节点,按照顺序进行放置,与单字段的非叶子几点是一致的,只是在叶子节点上有区别:

CREATE TABLE `sutdent_score` (
  `id` bigint(20) NOT NULL,
  `student_id` int(11) DEFAULT '0' COMMENT '学生id',
  `score` int(11) DEFAULT '0' COMMENT '成绩',
  PRIMARY KEY (`id`),
  KEY `index_student_and_score` (`student_id`,`score`)
)

对于相同的 student_id,它会按照 score 来排序,如果还有第三个字段,那么 score 相同数据,就会再按照第三个字段排序,以此类推。

所以不管是在非叶子节点还是叶子节点(页)上,都是按照从左边到右边的大小顺序来排列的。



版权声明:本文为weiguang102原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。