三维的读取图片(w, h, c):
import tensorflow as tf
import glob
import os
def _parse_function(filename):
# print(filename)
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_image(image_string) # (375, 500, 3)
image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200)
return image_resized
with tf.Session() as sess:
print( sess.run( img ).shape )
读取批量图片的读取图片(b, w, h, c):
import tensorflow as tf
import glob
import os
'''
Dataset 批量读取图片
'''
def _parse_function(filename):
# print(filename)
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_image(image_string) # (375, 500, 3)
image_decoded = tf.expand_dims(image_decoded, axis=0)
image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200)
return image_resized
img = _parse_function('../pascal/VOCdevkit/VOC2012/JPEGImages/2007_000068.jpg')
# image_resized = tf.image.resize_image_with_crop_or_pad( tf.truncated_normal((1,220,300,3))*10, 200, 200) 这种四维 形式是可以的
with tf.Session() as sess:
print( sess.run( img ).shape ) #直接初始化就可以 ,转换成四维报错误,不知道为什么,若谁想明白,请留言 报错误
#InvalidArgumentError (see above for traceback): Input shape axis 0 must equal 4, got shape [5]
Databae的操作:
import tensorflow as tf
import glob
import os
'''
Dataset 批量读取图片:
原因:
1. 先定义图片名的list,存放在Dataset中 from_tensor_slices()
2. 映射函数, 在函数中,对list中的图片进行读取,和resize,细节
tf.read_file(filename) 返回的是三维的,因为这个每次取出一张图片,放进队列中的,不需要转化为四维
然后对图片进行resize, 然后每个batch进行访问这个函数 ,所以get_next() 返回的是 [batch, w, h, c ]
3. 进行shuffle , batch repeat的设置
4. iterator = dataset.make_one_shot_iterator() 设置迭代器
5. iterator.get_next() 获取每个batch的图片
'''
def _parse_function(filename):
# print(filename)
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_image(image_string) #(375, 500, 3)
'''
Tensor` with type `uint8` with shape `[height, width, num_channels]` for
BMP, JPEG, and PNG images and shape `[num_frames, height, width, 3]` for
GIF images.
'''
# image_resized = tf.image.resize_images(label, [200, 200])
''' images 三维,四维的都可以
images: 4-D Tensor of shape `[batch, height, width, channels]` or
3-D Tensor of shape `[height, width, channels]`.
size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The
new size for the images.
'''
image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200)
# return tf.squeeze(mage_resized,axis=0)
return image_resized
filenames = glob.glob( os.path.join('../pascal/VOCdevkit/VOC2012/JPEGImages', "*." + 'jpg') )
dataset = tf.data.Dataset.from_tensor_slices((filenames))
dataset = dataset.map(_parse_function)
dataset = dataset.shuffle(10).batch(2).repeat(10)
iterator = dataset.make_one_shot_iterator()
img = iterator.get_next()
with tf.Session() as sess:
# print( sess.run(img).shape ) #(4, 200, 200, 3)
for _ in range (10):
print( sess.run(img).shape )
版权声明:本文为qq_30638831原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。