基本介绍
首先要知道HashMap使用到哪些数据结构,JDK1.8中HashMap实现依赖数组,单链表,红黑树实现
利用数组根据数组下标查找元素快的特征(时间复杂度O(1))根据Hash算法利用key的hash来计算存放元素的下标,实现根据key来快速找到下标,从而找到具体存放的Node,但是可能会发生hash冲突,当发生hash冲突时将使用链表纵向存放元素,1.8之后使用红黑树来优化(链表查找效率低时间复杂度O(n),红黑树查找时间复杂度O(logn))
几个内部常量
默认初始长度
/**
* The default initial capacity - MUST be a power of two.
* 默认初始容量 - 必须是 2 的幂。
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
默认负载因子
/**
* The load factor used when none specified in constructor.
* 在构造函数中未指定时使用的负载因子。
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
转换为树的阈值
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
* 使用树而不是链表的 数组长度计数阈值。将元素添加到至少具有这么多节点的链表时,
* 链表会转换为树。该值必须大于 2 且至少应为 8,以便与树移除中关于在收缩时
* 转换回普通bin的假设相匹配。
*/
static final int TREEIFY_THRESHOLD = 8;
收缩为链表的阈值
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
* 在调整大小操作期间取消(拆分)bin 的 bin 计数阈值。
* 应小于 TREEIFY_THRESHOLD,最多为 6 以在移除下进行收缩检测。
*/
static final int UNTREEIFY_THRESHOLD = 6;
转换为树节点数的阈值
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
* 可以将 bin 树化的最小表容量。 (否则,如果 bin 中的节点过多,则表将调整大小。)
* 应至少为 4 TREEIFY_THRESHOLD,以避免调整大小和树化阈值之间发生冲突
*/
static final int MIN_TREEIFY_CAPACITY = 64;
真实容量(数组长度*负载因子)
int threshold;
具体分析
构造器
-
无参构造
:当new一个HashMap时使用无参构造器只会初始化loadFactor(加载因子)为DEFAULT_LOAD_FACTOR(默认加载因子:0.75) -
public HashMap(int initialCapacity)
:指定长度的HashMap,使用指定的长度来构造数组,但是不在这一步去初始化数组,而是在之后的第一次put中,这里并不是指定多少长度就使用多长,而是必须是2的二次幂
此处涉及到为什么数组长度为什么是二次幂,这样做有两个好处
- 这样运算速度更快,比%运算更快
- 因为在确定桶的位置时确保落在数组的区间内;有一个& (数组长度-1)的操作,二次幂-1保证所有位全部为1运算更快
- (n – 1) & hash,当n为2次幂时,会满足一个公式:(n – 1) & hash = hash % n
Java8
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
Java11
static final int tableSizeFor(int cap) {
int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
@HotSpotIntrinsicCandidate
public static int numberOfLeadingZeros(int i) {
// HD, Count leading 0's
if (i <= 0)
return i == 0 ? 32 : 0;
int n = 31;
if (i >= 1 << 16) { n -= 16; i >>>= 16; }
if (i >= 1 << 8) { n -= 8; i >>>= 8; }
if (i >= 1 << 4) { n -= 4; i >>>= 4; }
if (i >= 1 << 2) { n -= 2; i >>>= 2; }
return n - (i >>> 1);
}
-
public HashMap(int initialCapacity, float loadFactor)
:使用指定的加载因子和长度来构造,同样要使用2的二次幂来作为初始长度
put
hash()
其中使用到key的hashcode来和hashcode右移16位后的值进行异或运算.
网上翻阅博客介绍:
目的:减少hash碰撞
在jvm虚拟机中,一个hashcode位32,那么右移16位进行打乱的^操作,即是对低16位一次打乱,而且混合后的低位掺杂了高位的部分特征,使高位的信息也被保留下来
引用博客:https://blog.csdn.net/weixin_41302239/article/details/110250102
hash()
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
putval()
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 判断是否对table初始化如果为空则调用resize()方法进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// i= (n - 1) & hash来计算Node放在数组的哪个位置其中n-1为数组的length-1
// &确保能落在数组的区间内
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//
else {
Node<K,V> e; K k;
// 如果hash相等并且equals相等则覆盖原来的值
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果是树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 往链表尾部插入
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 当链表长度大于等于8时转为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果hash相等并且equals相等则覆盖原来的值不进行任何操作break跳出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
resize()
final Node<K,V>[] resize() {
// 第一次put此时table还未被初始化,table为null
Node<K,V>[] oldTab = table;
// oldCap=0
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 当前容量
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
// 首次初始阈值表示使用默认值
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 初始化table数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 该节点没有next节点,处理不是链表的情况
if (e.next == null)
// 重新确认在新数组中的位置,再将该元素放入新数组
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
版权声明:本文为qq_42618152原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。