Tensorflow Deep MNIST: Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]
<ul class="article_tags clearfix csdn-tracking-statistics tracking-click" data-mod="popu_377">
<li class="tit">标签:</li>
-
Deep Learning
/ -
tensorflow
/ -
oom
/ -
今天测试卷积神经网络报了如题所示的错误,我跑的代码如下。
-
from
tensorflow.examples.tutorials.mnist
import
input_data -
mnist = input_data.read_data_sets(
’MNIST_data’
, one_hot=
True
) -
import
tensorflow as tf - sess = tf.InteractiveSession()
-
x = tf.placeholder(tf.float32, shape=[
None
,
784
]) -
y_ = tf.placeholder(tf.float32, shape=[
None
,
10
]) -
W = tf.Variable(tf.zeros([
784
,
10
])) -
b = tf.Variable(tf.zeros([
10
])) - y = tf.nn.softmax(tf.matmul(x,W) + b)
-
def
weight_variable(shape): -
initial = tf.truncated_normal(shape, stddev=
0.1
) -
return
tf.Variable(initial) -
def
bias_variable(shape): -
initial = tf.constant(
0.1
, shape=shape) -
return
tf.Variable(initial) -
def
conv2d(x, W): -
return
tf.nn.conv2d(x, W, strides=[
1
,
1
,
1
,
1
], padding=
‘SAME’
) -
def
max_pool_2x2(x): -
return
tf.nn.max_pool(x, ksize=[
1
,
2
,
2
,
1
], -
strides=[
1
,
2
,
2
,
1
], padding=
‘SAME’
) -
W_conv1 = weight_variable([
5
,
5
,
1
,
32
]) -
b_conv1 = bias_variable([
32
]) -
x_image = tf.reshape(x, [-
1
,
28
,
28
,
1
]) - h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- h_pool1 = max_pool_2x2(h_conv1)
-
W_conv2 = weight_variable([
5
,
5
,
32
,
64
]) -
b_conv2 = bias_variable([
64
]) - h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- h_pool2 = max_pool_2x2(h_conv2)
-
W_fc1 = weight_variable([
7
*
7
*
64
,
1024
]) -
b_fc1 = bias_variable([
1024
]) -
h_pool2_flat = tf.reshape(h_pool2, [-
1
,
7
*
7
*
64
]) - h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- keep_prob = tf.placeholder(tf.float32)
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
-
W_fc2 = weight_variable([
1024
,
10
]) -
b_fc2 = bias_variable([
10
]) - y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
-
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[
1
])) -
train_step = tf.train.AdamOptimizer(
1e
–
4
).minimize(cross_entropy) -
correct_prediction = tf.equal(tf.argmax(y_conv,
1
), tf.argmax(y_,
1
)) - accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- init = tf.initialize_all_variables()
- config = tf.ConfigProto()
-
config.gpu_options.allocator_type =
’BFC’
- with tf.Session(config = config) as s:
- sess.run(init)
-
for
i
in
range(
20000
): -
batch = mnist.train.next_batch(
50
) -
if
i%
100
==
0
: - train_accuracy = accuracy.eval(feed_dict={
-
x:batch[
0
], y_: batch[
1
], keep_prob:
1.0
}) -
print
(
“step %d, training accuracy %g”
%(i, train_accuracy)) -
train_step.run(feed_dict={x: batch[
0
], y_: batch[
1
], keep_prob:
0.5
}) -
print
(
“test accuracy %g”
%accuracy.eval(feed_dict={ -
x: mnist.test.images, y_: mnist.test.labels, keep_prob:
1.0
}))
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow as tf sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x,W) + b) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) init = tf.initialize_all_variables() config = tf.ConfigProto() config.gpu_options.allocator_type = 'BFC' with tf.Session(config = config) as s: sess.run(init) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
然后错误大致如下
-
W tensorflow/core/common_runtime/bfc_allocator.cc:
270
] **********************************************************xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx -
W tensorflow/core/common_runtime/bfc_allocator.cc:
271
] Ran out of memory trying to allocate
957.03MiB
. See logs
for
memory state. -
W tensorflow/core/framework/op_kernel.cc:
968
] Resource exhausted: OOM when allocating tensor with shape[
10000
,
32
,
28
,
28
] - Traceback (most recent call last):
-
File
”trainer_deepMnist.py”
, line
109
,
in
<module> -
x: mnist.test.images, y_: mnist.test.labels, keep_prob:
1.0
})) -
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py”
, line
559
,
in
eval -
return
_eval_using_default_session(
self
, feed_dict,
self
.graph, session) -
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py”
, line
3648
,
in
_eval_using_default_session -
return
session.run(tensors, feed_dict) -
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py”
, line
710
,
in
run - run_metadata_ptr)
-
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py”
, line
908
,
in
_run - feed_dict_string, options, run_metadata)
-
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py”
, line
958
,
in
_do_run - target_list, options, run_metadata)
-
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py”
, line
978
,
in
_do_call -
raise
type(e)(node_def, op, message) -
tensorflow.python.framework.errors.ResourceExhaustedError: OOM when allocating tensor with shape[
10000
,
32
,
28
,
28
] -
[[Node: Conv2D = Conv2D[T=DT_FLOAT, data_format=
”NHWC”
, padding=
“SAME”
, strides=[
1
,
1
,
1
,
1
], use_cudnn_on_gpu=true, _device=
“/job:localhost/replica:0/task:0/gpu:0”
](Reshape, Variable_2/read)]] -
Caused by op u
’Conv2D’
, defined at: -
File
”trainer_deepMnist.py”
, line
61
,
in
<module> - h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
-
File
”trainer_deepMnist.py”
, line
46
,
in
conv2d -
return
tf.nn.conv2d(x, W, strides=[
1
,
1
,
1
,
1
], padding=
‘SAME’
) -
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py”
, line
394
,
in
conv2d - data_format=data_format, name=name)
-
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py”
, line
703
,
in
apply_op - op_def=op_def)
-
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py”
, line
2320
,
in
create_op -
original_op=
self
._default_original_op, op_def=op_def) -
File
”/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py”
, line
1239
,
in
__init__ -
self
._traceback = _extract_stack()
W tensorflow/core/common_runtime/bfc_allocator.cc:270] **********************************************************xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx W tensorflow/core/common_runtime/bfc_allocator.cc:271] Ran out of memory trying to allocate 957.03MiB. See logs for memory state. W tensorflow/core/framework/op_kernel.cc:968] Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28] Traceback (most recent call last): File "trainer_deepMnist.py", line 109, in <module> x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 559, in eval return _eval_using_default_session(self, feed_dict, self.graph, session) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3648, in _eval_using_default_session return session.run(tensors, feed_dict) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 710, in run run_metadata_ptr) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 908, in _run feed_dict_string, options, run_metadata) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 958, in _do_run target_list, options, run_metadata) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 978, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors.ResourceExhaustedError: OOM when allocating tensor with shape[10000,32,28,28] [[Node: Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/gpu:0"](Reshape, Variable_2/read)]] Caused by op u'Conv2D', defined at: File "trainer_deepMnist.py", line 61, in <module> h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) File "trainer_deepMnist.py", line 46, in conv2d return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 394, in conv2d data_format=data_format, name=name) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op op_def=op_def) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2320, in create_op original_op=self._default_original_op, op_def=op_def) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1239, in __init__ self._traceback = _extract_stack()
原因是GPU OOM,没法分配那么多显存来搞定accuracy evaluation,因此需要改成批处理。
TensorFlow给出的原因解释:
Here is how I solved this problem: the error means that the GPU runs out of memory during accuracy evaluation. Hence it needs a smaller sized dataset, which can be achieved by using data in batches. So, instead of running the code on the whole test dataset it needs to be run in batches.
解决方案:把最后那句print换成我这的三行,分批print,就没问题了。
-
for
i
in
xrange(
10
): -
testSet = mnist.test.next_batch(
50
) -
print
(
“test accuracy %g”
%accuracy.eval(feed_dict={ x: testSet[
0
], y_: testSet[
1
], keep_prob:
1.0
}))
for i in xrange(10): 若报错 可将xrange改为range testSet = mnist.test.next_batch(50) print("test accuracy %g"%accuracy.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0}))
tensorflow搬运工:
https://stackoverflow.com/questions/39076388/tensorflow-deep-mnist-resource-exhausted-oom-when-alloc
</div> </div> <script> $(".MathJax").remove(); </script> </article>
-