需求
首先从kafka中读取数据,然后从mysql中读取数据,然后将这两个数据进行合并处理。
环境
- Flink 1.8.2
实现
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment executionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
String topic = "mytest";
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "swarm-manager:9092");
properties.setProperty("group.id", "test");
properties.setProperty("key.serializer", StringSerializer.class.getName());
properties.setProperty("value.serializer", StringSerializer.class.getName());
FlinkKafkaConsumer<String> flinkKafkaConsumer = new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties);
//接收kafka
DataStreamSource<String> kafkaDataSource = executionEnvironment.addSource(flinkKafkaConsumer);
SingleOutputStreamOperator<String> kafkaData = data.map(new MapFunction<String, String>() {....});
//接收mysql
DataStreamSource<HashMap<String, String>> mysqlData = executionEnvironment.addSource(new MySqlSource());
}
上面可以实现分别从mysql和kafka中获取数据,并且都设置好数据源。
其中mysql数据源配置如下:
package com.vincent.project;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.util.HashMap;
public class MySqlSource extends RichParallelSourceFunction<HashMap<String, String>> {
private PreparedStatement ps;
private Connection connection;
// 用来建立连接
@Override
public void open(Configuration parameters) throws Exception {
connection = getConnection();
String sql = "select user_id, domain from user_domain_config";
ps = this.connection.prepareStatement(sql);
System.out.println("open");
}
@Override
public void close() throws Exception {
if (ps != null) {
ps.close();
}
if (connection != null) {
connection.close();
}
}
private Connection getConnection() {
Connection con = null;
try {
Class.forName("com.mysql.cj.jdbc.Driver");
String url = "jdbc:mysql://swarm-manager:3306/imooc_flink?useUnicode=true&characterEncoding=UTF-8";
String username = "root";
String password = "123456";
con = DriverManager.getConnection(url, username, password);
} catch (Exception e) {
e.printStackTrace();
System.out.println("-----------mysql get connection has exception , msg = " + e.getMessage());
}
return con;
}
/**
* 此处是代码的关键,要从mysql表中,把数据读取出来,转成Map进行数据的封装
* @param sourceContext
* @throws Exception
*/
@Override
public void run(SourceContext<HashMap<String, String>> sourceContext) throws Exception {
ResultSet resultSet = ps.executeQuery();
HashMap<String, String> map = new HashMap<>();
while (resultSet.next()) {
String user_id = resultSet.getString("user_id");
String domain = resultSet.getString("domain");
map.put(domain, user_id);
}
sourceContext.collect(map);
}
@Override
public void cancel() {
}
}
连接两个数据源:
// CoFlatMapFunction 的第一个类型是logData的数据类型,第二个类型是Mysql的数据类型,第三个类型是输出类型
SingleOutputStreamOperator<String> connectData = logData.connect(mysqlData).flatMap(new CoFlatMapFunction<Tuple3<Long, String, String>, HashMap<String, String>, String>() {
HashMap<String, String> userDomainMap = new HashMap<>();
//处理logData的
@Override
public void flatMap1(Tuple3<Long, String, String> longStringStringTuple3, Collector<String> collector) throws Exception {
String domain = longStringStringTuple3.f1;
String userId = userDomainMap.getOrDefault(domain, "");
System.out.println("userID:" + userId);
collector.collect(longStringStringTuple3.f0 + "\t" + longStringStringTuple3.f1 + "\t" + longStringStringTuple3.f2 + "\t" + userId);
}
//处理mysql的
@Override
public void flatMap2(HashMap<String, String> stringStringHashMap, Collector<String> collector) throws Exception {
userDomainMap = stringStringHashMap;
}
});
connectData.setParallelism(1).print();
使用connector链接两个数据源
版权声明:本文为vincent_duan原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。