汇总篇:
计算几何汇总
首先,求出圆心O在直线AB上的投影点E
然后求出
AB
的方向向量e=AB/|AB|
令EC=ED=base
base = sqrt(r^2-OE^2)
EC = -base *e
ED = base*e
C=E+EC
D=E+ED
相切时求得的C=D,CDE重合
如果A为切点,那么ACDE重合
#include<cmath>
const int eps = 1e-2;//精度
double myRound(double a){//因为小数有误差,所以判断相切时要精确到固定位数
return floor(a * 100 + 0.5) / 100; /*保留小数点后2位*/
}
class point{
public:
double x;
double y;
point(double x_=0,double y_=0){
x=x_;
y=y_;
}
void set(point p){
x=p.x;
y=p.y;
}
friend const point operator+(const point& p1,const point& p2){
return point(p1.x+p2.x,p1.y+p2.y);
};
friend const point operator-(const point& p1,const point& p2){
return point(p1.x-p2.x,p1.y-p2.y);
};
friend const point operator*(const point& p,const double& m){
return point(p.x*m,p.y*m);
};
friend const point operator*(const double& m,const point& p){
return point(p.x*m,p.y*m);
};
friend const point operator/(const point& p,const double& m){
return point(p.x/m,p.y/m);
};
//friend ostream& operator <<(ostream& out,point& a);
};
typedef point vect2;//重命名,向量也是用坐标表示
class line{
public:
point start;
point end;
line(point s,point e){
start.set(s);
end.set(e);
}
};
double dot(point O,point A,point B){//点乘
double oa_x=A.x-O.x;
double oa_y=A.y-O.y;
double ob_x=B.x-O.x;
double ob_y=B.y-O.y;
return oa_x*ob_x+oa_y*ob_y;
}
double dis(const point &p1,const point &p2){//求两点之间距离
double ans=(p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y);
return sqrt(ans);
}
double dis2(const point &p1,const point &p2){//求两点之间距离
return(p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y);
}
//点到直线的距离
double disOfPointToLine(point O,line l){
double cos0=dot(l.start,O,l.end)/(dis(O,l.start)*dis(l.start,l.end));
return dis(O,l.start)*sin(acos(cos0));
}
//点在直线上的投影
point shadowPointOfPointToLine(point A,line l){//投影点出了问题
point B = l.start;
point C = l.end;
point D;
vect2 BC = C - B;
vect2 BA = B - A;
vect2 BD = dot(B,A,C)/dis2(B,C)*BC;
D = B + BD;
return D;
}
//直线到圆的交点,所需函数:点到直线的距离,点在直线上的投影,两点之间的距离,判断点是否在线段上
bool interPointOfLineAndCircle(line l,point O,double r,vector<point> &ans){
ans.clear();
point C,D,E;
double d= disOfPointToLine(O,l);
E = shadowPointOfPointToLine(O,l);
vect2 AB = l.end-l.start;
vect2 e=AB/dis(l.start,l.end);
double base2 =myRound(r*r-d*d);//取约数,不然本来是0的会得不到0
//相切base^2 =0 两个点相等,相离 base^2<0
if(base2<0)return false;
double base = sqrt(base2);
C = E - e*base;
D = E + e*base;
ans.push_back(C);
if(!(D.x==C.x&&D.y==C.y))//避免点重复
ans.push_back(D);
if(ans.size()>0)return true;
else return false;
}
//线段到圆的交点,所需函数:点到直线的距离,点在直线上的投影,两点之间的距离,判断点是否在线段上
bool interPointOfLineAndCircle(line l,point O,double r,vector<point> &ans){
ans.clear();
point C,D,E;
double d= disOfPointToLine(O,l);
E = shadowPointOfPointToLine(O,l);
vect2 AB = l.end-l.start;
vect2 e=AB/dis(l.start,l.end);
double base2 =myRound(r*r-d*d);//取约数,不然本来是0的会得不到0
//相切base^2 =0 两个点相等,相离 base^2<0
if(base2<0)return false;
double base = sqrt(base2);
C = E - e*base;
D = E + e*base;
//判断C,D时候在线段AB上即可
if(pointIsOnLine(C,l))ans.push_back(C);
if(pointIsOnLine(D,l)&&!(D.x==C.x&&D.y==C.y))//避免点重复
ans.push_back(D);
if(ans.size()>0)return true;
else return false;
}
版权声明:本文为Meloor原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。