1,生成向量的方法
(1) seq()函数
> x=seq(from=1, to=5, by=0.5)
> x
# [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
(2)rep()函数
> x=rep(pi, times=5)
> x
# [1] 3.141593 3.141593 3.141593 3.141593 3.141593
(3)seq 与 rep 结合使用
> x=rep(seq(from=1,to=5,by=1), times=5)
> x
# [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(4)自主建立向量
> x=c(rep(seq(from=1,to=5,by=1), times=2),pi,17,24)
> x
# [1] 1.000000 2.000000 3.000000 4.000000 5.000000 1.000000 2.000000 3.000000
# [9] 4.000000 5.000000 3.141593 17.000000 24.000000
2,选择向量元素
(1)x[ i ] 形式,i表示下标位
> x
# [1] 1.000000 2.000000 3.000000 4.000000 5.000000 1.000000 2.000000 3.000000
# [9] 4.000000 5.000000 3.141593 17.000000 24.000000
> x[11]
# [1] 3.141593
(2)x[ m: n] 形式,选择一段元素
> x[c(11:13)]
# [1] 3.141593 17.000000 24.000000
> x[seq(from=11,to=13,b=1)] #用了seq函数
# [1] 3.141593 17.000000 24.000000
(3)使用逻辑向量从数据向量中选择元素
> x>3 # 逻辑判断x的各元素
# [1] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[x>3] #选择TRUE的位置的元素
# [1] 4.000000 5.000000 4.000000 5.000000 3.141593 17.000000 24.000000
> x%%2==0 #选择奇数
# [1] FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
> x[x%%2==1]
# [1] 1 3 5 1 3 5 17
(4)自定义行名,取数
> year=c(1983,1982,1988,1990)
> names(year)=c('A','B','C','D')
> year
# A B C D
# 1983 1982 1988 1990
> year[c('A','D')]
# A D
# 1983 1990
3,函数编写
(1)if选择函数
fun.test <- function(a, b, method = "add"){ ## function关键字,fun.test函数名
if(method == "add"){ ## 如果if或者for/while等后面的语句只有一行,则无需使用花括号
res <- a + b
}
if(method == "subtract"){
res <- a - b
}
return(res) ## 返回值
}
> ### 检验结果
> fun.test(a = 10, b = 8, method = "add")
# [1] 18
> ### 检验结果
> fun.test(a = 10, b = 8, method = "subtract")
# [1] 2
(2)for循环函数
### for循环与算法
test.sum <- function(x)
{
res <- 0 ## 设置初始值,在第一次循环的时候使用
for(i in 1:length(x)){
res <- res + x[i] ## 这部分是算法的核心,总是从右面开始计算,结果存到左边的对象
}
return(res)
}
### 检验函数
a <- c(1,2,1,6,1,8,9,8)
test.sum(a)
sum(a)
(3)return函数
## 计算标准差
sd2 <- function(x)
{
# 异常处理,当输入的数据不是数值类型时报错
if(!is.numeric(x)){
stop("the input data must be numeric!\n")
}
# 异常处理,当仅输入一个数据的时候,告知不能计算标准差
if(length(x) == 1){
stop("can not compute sd for one number,
a numeric vector required.\n")
}
## 初始化一个临时向量,保存循环的结果,
## 求每个值与平均值的平方
x2 <- c()
## 求该向量的平均值
meanx <- mean(x)
## 循环
for(i in 1:length(x)){
xn <- x[i] - meanx
x2[i] <- xn^2
}
## 求总平方和
sum2 <- sum(x2)
# 计算标准差
sd <- sqrt(sum2/(length(x)-1))
# 返回值
return(sd)
}
## 程序的检验
## 正常的情况
sd2(c(2,6,4,9,12))
## 一个数值的情况
sd2(3)
## 输入数据不为数值类型时
sd2(c("1", "2"))
版权声明:本文为ytadx原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。