import cv2
import os
import numpy as np
from PIL import Image #pillow
import pyttsx3
import sys
import json
def makeDir(engine):
if not os.path.exists("face_trainer"):
print("创建预训练环境")
engine.say('检测到第一次启动,未检测到环境,正在创建环境')
engine.say('正在创建预训练环境')
os.mkdir("face_trainer")
engine.say('创建成功')
engine.runAndWait()
if not os.path.exists("Facedata"):
print("创建训练环境")
engine.say('正在创建训练环境')
os.mkdir("Facedata")
engine.say('创建成功')
engine.runAndWait()
def getFace(cap,face_id):
# 调用笔记本内置摄像头,所以参数为0,如果有其他的摄像头可以调整参数为1,2
#cap = cv2.VideoCapture(0)
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
#face_id = input('\n enter user id:')
print('\n Initializing face capture. Look at the camera and wait ...')
count = 0
while True:
# 从摄像头读取图片
sucess, img = cap.read()
# 转为灰度图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 检测人脸
faces = face_detector.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))
count += 1
# 保存图像
cv2.imwrite("Facedata/User." + str(face_id) + '.' + str(count) + '.jpg', gray[y: y + h, x: x + w])
cv2.imshow('image', img)
# 保持画面的持续。
k = cv2.waitKey(1)
if k == 27: # 通过esc键退出摄像
break
elif count >= 100: # 得到1000个样本后退出摄像
break
cv2.destroyAllWindows()
def getImagesAndLabels(path,detector):
imagePaths = [os.path.join(path, f) for f in os.listdir(path)] # join函数的作用?
faceSamples = []
ids = []
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale
img_numpy = np.array(PIL_img, 'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_numpy)
for (x, y, w, h) in faces:
faceSamples.append(img_numpy[y:y + h, x: x + w])
ids.append(id)
return faceSamples, ids
def trainFace():
# 人脸数据路径
path = 'Facedata'
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
print('Training faces. It will take a few seconds. Wait ...')
faces, ids = getImagesAndLabels(path,detector)
recognizer.train(faces, np.array(ids))
recognizer.write(r'face_trainer\trainer.yml')
print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))
def checkFace(cam,names,engine):
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('face_trainer/trainer.yml')
cascadePath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
idnum = 0
#names = ['zongyong', 'zhangmin', 'shanglanqing']
#cam = cv2.VideoCapture(0)
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(int(minW), int(minH))
)
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
idnum, confidence = recognizer.predict(gray[y:y + h, x:x + w])
if confidence < 100:
idnum = names[idnum]
confidence = "{0}%".format(round(100 - confidence))
say(engine, "欢迎 "+idnum+"签到成功!")
return
else:
idnum = "unknown"
confidence = "{0}%".format(round(100 - confidence))
cv2.putText(img, str(idnum), (x + 5, y - 5), font, 1, (0, 0, 255), 1)
cv2.putText(img, str(confidence), (x + 5, y + h - 5), font, 1, (0, 0, 0), 1)
cv2.imshow('camera', img)
k = cv2.waitKey(10)
if k == 27:
break
cam.release()
cv2.destroyAllWindows()
def say(engine,str):
engine.say(str)
engine.runAndWait()
if __name__ == '__main__':
names = []
if os.path.exists("name.txt"):
with open("name.txt") as f:
names = json.loads(f.read())
print(names)
engine = pyttsx3.init()
rate = engine.getProperty('rate')
engine.setProperty('rate', rate - 20)
makeDir(engine)
while True:
say(engine, "是否要录入新的人脸信息 ")
say(engine, "输入0 代表是 输入其他代表不是")
value = input("0:是 or other:否")
if value == '0':
say(engine, "请输入您的姓名,注意要写成拼音形式")
name = input("请输入姓名:")
names.append(name)
say(engine,"正在打开摄像头")
cam = cv2.VideoCapture(0)
say(engine, "注视摄像头,开始采集人脸数据")
getFace(cam,len(names)-1)
say(engine, "采集完毕,开始训练")
trainFace()
say(engine, "训练完毕,开始人脸识别 ,按esc键将会终止本次识别")
else:
say(engine, "开始人脸识别")
say(engine, "正在打开摄像头")
cam = cv2.VideoCapture(0)
checkFace(cam,names,engine)
say(engine, "继续输入 0 退出系统 ,输入 其他任意键 录入新的人脸")
key = input("输入key:(0 - 退出系统 ,other - 重新启动系统)")
if key == '0':
#将姓名保存到文件
with open("name.txt",'w') as f:
f.write(json.dumps(names))
say(engine, "信息已保存")
say(engine, "再见")
sys.exit(0)
版权声明:本文为zxk_hi原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。