PyTorch-基本数据操作(Numpy)

  • Post author:
  • Post category:其他



PyTorch-基本数据操作(Numpy)


硬件:NVIDIA-GTX1080


软件:Windows7、python3.6.5、pytorch-gpu-0.4.1


一、基础知识

1、Torch 为神经网络界的 Numpy,

torch.from_numpy()



torch_data.numpy()

即可完成torch数据和numpy数据的相互转化

2、Torch 浮点数接收方式,

torch.FloatTensor()

,数据计算方式和numpy相似,如abs, sin, mean…

3、Torch 矩阵点乘方式,

torch.mm(tensor, tensor)

,与numpy.matmul(data, data) 类似


二、代码展示


Example1:

import torch
import numpy as np

np_data = np.arange(6).reshape((2, 3))
torch_data = torch.from_numpy(np_data)
tensor2array = torch_data.numpy()
print(
    '\nnumpy array:', np_data,          # [[0 1 2], [3 4 5]]
    '\ntorch tensor:', torch_data,      #  0  1  2 \n 3  4  5    [torch.LongTensor of size 2x3]
    '\ntensor to array:', tensor2array, # [[0 1 2], [3 4 5]]
)


Example2:

import torch
import numpy as np

# abs 绝对值计算
data = [-1, -2, 1, 2]
tensor = torch.FloatTensor(data)  # 转换成32位浮点 tensor
print(
    '\nabs',
    '\nnumpy: ', np.abs(data),          # [1 2 1 2]
    '\ntorch: ', torch.abs(tensor)      # [1 2 1 2]
)

# sin   三角函数 sin
print(
    '\nsin',
    '\nnumpy: ', np.sin(data),      # [-0.84147098 -0.90929743  0.84147098  0.90929743]
    '\ntorch: ', torch.sin(tensor)  # [-0.8415 -0.9093  0.8415  0.9093]
)

# mean  均值
print(
    '\nmean',
    '\nnumpy: ', np.mean(data),         # 0.0
    '\ntorch: ', torch.mean(tensor)     # 0.0
)


Example3:

import torch
import numpy as np

# matrix multiplication 矩阵点乘
data = [[1,2], [3,4]]
tensor = torch.FloatTensor(data)  # 转换成32位浮点 tensor
# correct method
print(
    '\nmatrix multiplication (matmul)',
    '\nnumpy: ', np.matmul(data, data),     # [[7, 10], [15, 22]]
    '\ntorch: ', torch.mm(tensor, tensor)   # [[7, 10], [15, 22]]
)


三、参考:


https://morvanzhou.github.io/


任何问题请加

唯一

QQ

2258205918

(名称

samylee

)!




唯一

VX:samylee_csdn



版权声明:本文为samylee原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。