使用了统一事件源管理 信号和IO
详细实现请见注释
特点:
多个进程共享同一个内存进行读写,效率快,
而且往不同区域写入是通过客户端下标 1, 2, 3 控制的(没有覆盖问题)
而且读数据不会破坏数据(没有竟态条件) 所以此临界区不需要加锁,效率高
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#define USER_LIMIT 5
#define BUFFER_SIZE 1024
#define FD_LIMIT 65535
#define MAX_EVENT_NUMBER 1024
#define PROCESS_LIMIT 65536
/*
* 父进程工作: epoll_wait等待1. 到来的新连接,建立子进程epoll_Wait新连接.2 处理信号,3.子进程接收到数据通知父进程进行群发的信息
* 子进程工作: epoll_wait 等待1. 新的连接上有新的数据,写入共享内存,并且通知父进程进行群发,2.接收到父进程的群发消息,发送给connfd. (父进程仅仅通知是第几个客户端),子进程通过共享内存的偏移量获得数据
*
*/
struct client_data
{
sockaddr_in address;
int connfd;
pid_t pid;
int pipefd[2];
};
static const char* shm_name = "/my_shm";
int sig_pipefd[2];
int epollfd;
int listenfd;
int shmfd;
char* share_mem = 0;
//客户端数据数据
client_data* users = 0;
// 子进程退出的时候,通过这个数组[pid]找到相应的客户端数据, pid = waitpid 然后在主进程清空对应的客户端
int* sub_process = 0;
int user_count = 0;//当前数组的长度,表示当前有多少客户端
bool stop_child = false;
int setnonblocking( int fd )
{
int old_option = fcntl( fd, F_GETFL );
int new_option = old_option | O_NONBLOCK;
fcntl( fd, F_SETFL, new_option );
return old_option;
}
void addfd( int epollfd, int fd )
{
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLET;
epoll_ctl( epollfd, EPOLL_CTL_ADD, fd, &event );
setnonblocking( fd );
}
void sig_handler( int sig )
{
int save_errno = errno;
int msg = sig;
send( sig_pipefd[1], ( char* )&msg, 1, 0 );
errno = save_errno;
}
void addsig( int sig, void(*handler)(int), bool restart = true )
{
struct sigaction sa;
memset( &sa, '\0', sizeof( sa ) );
sa.sa_handler = handler;
if( restart )
{
sa.sa_flags |= SA_RESTART;
}
sigfillset( &sa.sa_mask );
assert( sigaction( sig, &sa, NULL ) != -1 );
}
void del_resource()
{
close( sig_pipefd[0] );
close( sig_pipefd[1] );
close( listenfd );
close( epollfd );
shm_unlink( shm_name );
delete [] users;
delete [] sub_process;
}
void child_term_handler( int sig )
{
stop_child = true;
}
int run_child( int idx, client_data* users, char* share_mem )
{
//idx 是为客户端分配的下标,也就是user_count
epoll_event events[ MAX_EVENT_NUMBER ];
int child_epollfd = epoll_create( 5 );
assert( child_epollfd != -1 );
// connfd 是父进程通过listen获得的文件描述符
int connfd = users[idx].connfd;
addfd( child_epollfd, connfd );
int pipefd = users[idx].pipefd[1];
addfd( child_epollfd, pipefd );
int ret;
addsig( SIGTERM, child_term_handler, false );
while( !stop_child )
{
int number = epoll_wait( child_epollfd, events, MAX_EVENT_NUMBER, -1 );
if ( ( number < 0 ) && ( errno != EINTR ) )
{
printf( "epoll failure\n" );
break;
}
for ( int i = 0; i < number; i++ )
{
int sockfd = events[i].data.fd;
if( ( sockfd == connfd ) && ( events[i].events & EPOLLIN ) )
{
memset( share_mem + idx*BUFFER_SIZE, '\0', BUFFER_SIZE );
ret = recv( connfd, share_mem + idx*BUFFER_SIZE, BUFFER_SIZE-1, 0 );
if( ret < 0 )
{
if( errno != EAGAIN )
{
stop_child = true;
}
}
else if( ret == 0 )
{
stop_child = true;
}
else
{
// 向父进程发送读取成功的信息
send( pipefd, ( char* )&idx, sizeof( idx ), 0 );
}
}
// 群发消息,获得消息的地址
else if( ( sockfd == pipefd ) && ( events[i].events & EPOLLIN ) )
{
int client = 0;
ret = recv( sockfd, ( char* )&client, sizeof( client ), 0 );
if( ret < 0 )
{
if( errno != EAGAIN )
{
stop_child = true;
}
}
else if( ret == 0 )
{
stop_child = true;
}
else
{
// 从古拿到获取client的编号,就找到了在共享内存中的偏移量,然后将内容发送给connfd
send( connfd, share_mem + client * BUFFER_SIZE, BUFFER_SIZE, 0 );
}
}
else
{
continue;
}
}
}
close( connfd );
close( pipefd );
close( child_epollfd );
return 0;
}
int main( int argc, char* argv[] )
{
if( argc <= 2 )
{
printf( "usage: %s ip_address port_number\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] );
int ret = 0;
struct sockaddr_in address;
bzero( &address, sizeof( address ) );
address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &address.sin_addr );
address.sin_port = htons( port );
listenfd = socket( PF_INET, SOCK_STREAM, 0 );
assert( listenfd >= 0 );
ret = bind( listenfd, ( struct sockaddr* )&address, sizeof( address ) );
assert( ret != -1 );
ret = listen( listenfd, 5 );
assert( ret != -1 );
user_count = 0;
users = new client_data [ USER_LIMIT+1 ];
sub_process = new int [ PROCESS_LIMIT ];
for( int i = 0; i < PROCESS_LIMIT; ++i )
{
sub_process[i] = -1;
}
epoll_event events[ MAX_EVENT_NUMBER ];
epollfd = epoll_create( 5 );
assert( epollfd != -1 );
addfd( epollfd, listenfd );
ret = socketpair( PF_UNIX, SOCK_STREAM, 0, sig_pipefd );
assert( ret != -1 );
setnonblocking( sig_pipefd[1] );
addfd( epollfd, sig_pipefd[0] );
addsig( SIGCHLD, sig_handler );
addsig( SIGTERM, sig_handler );
addsig( SIGINT, sig_handler );
addsig( SIGPIPE, SIG_IGN );
bool stop_server = false;
bool terminate = false;
shmfd = shm_open( shm_name, O_CREAT | O_RDWR, 0666 );
assert( shmfd != -1 );
ret = ftruncate( shmfd, USER_LIMIT * BUFFER_SIZE );
assert( ret != -1 );
share_mem = (char*)mmap( NULL, USER_LIMIT * BUFFER_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0 );
assert( share_mem != MAP_FAILED );
close( shmfd );
while( !stop_server )
{
int number = epoll_wait( epollfd, events, MAX_EVENT_NUMBER, -1 );
if ( ( number < 0 ) && ( errno != EINTR ) )
{
printf( "epoll failure\n" );
break;
}
for ( int i = 0; i < number; i++ )
{
int sockfd = events[i].data.fd;
if( sockfd == listenfd )
{
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof( client_address );
int connfd = accept( listenfd, ( struct sockaddr* )&client_address, &client_addrlength );
if ( connfd < 0 )
{
printf( "errno is: %d\n", errno );
continue;
}
if( user_count >= USER_LIMIT )
{
const char* info = "too many users\n";
printf( "%s", info );
send( connfd, info, strlen( info ), 0 );
close( connfd );
continue;
}
users[user_count].address = client_address;
users[user_count].connfd = connfd;
// pipefd 变成socketpair
ret = socketpair( PF_UNIX, SOCK_STREAM, 0, users[user_count].pipefd );
assert( ret != -1 );
pid_t pid = fork();
//fork wrong
if( pid < 0 )
{
close( connfd );
continue;
}
// child process
else if( pid == 0 )
{
close( epollfd );
close( listenfd );
close( users[user_count].pipefd[0] );
close( sig_pipefd[0] );
close( sig_pipefd[1] );
// 首次user_count = 0
run_child( user_count, users, share_mem );
munmap( (void*)share_mem, USER_LIMIT * BUFFER_SIZE );
exit( 0 );
}
else
{
close( connfd );
close( users[user_count].pipefd[1] );
//注册 新连接的有数据的事件
addfd( epollfd, users[user_count].pipefd[0] );
// users[]
users[user_count].pid = pid;
// 该子进程的 通过[pid] 找到连接的客户 首次是0
sub_process[pid] = user_count;
user_count++;
}
}
else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) )
{
int sig;
char signals[1024];
ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 );
if( ret == -1 )
{
continue;
}
else if( ret == 0 )
{
continue;
}
else
{
for( int i = 0; i < ret; ++i )
{
// 遍历数组来获得触发的信号
switch( signals[i] )
{
case SIGCHLD:
{
pid_t pid;
int stat;
while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 )
{
//通过子进程数组就可以找到删除的客户端编号/
int del_user = sub_process[pid];
//解除删除的 进程数组对应关系
sub_process[pid] = -1;
if( ( del_user < 0 ) || ( del_user > USER_LIMIT ) )
{
printf( "the deleted user was not change\n" );
continue;
}
epoll_ctl( epollfd, EPOLL_CTL_DEL, users[del_user].pipefd[0], 0 );
close( users[del_user].pipefd[0] );
//用最后一个客户端填补 删除的客户端(保证数组下标连续)
users[del_user] = users[--user_count];
// del_user 已经更新 为 最后一个客户端的 中的pid, 此pid应该指向 del_user
sub_process[users[del_user].pid] = del_user;
printf( "child %d exit, now we have %d users\n", del_user, user_count );
}
if( terminate && user_count == 0 )
{
stop_server = true;
}
break;
}
case SIGTERM:
case SIGINT:
{
printf( "kill all the clild now\n" );
//addsig( SIGTERM, SIG_IGN );
//addsig( SIGINT, SIG_IGN );
if( user_count == 0 )
{
stop_server = true;
break;
}
for( int i = 0; i < user_count; ++i )
{
int pid = users[i].pid;
kill( pid, SIGTERM );
}
terminate = true;
break;
}
default:
{
break;
}
}
}
}
}
// 子进程通知父进程读取了数据,父进程就要开始向其他进程报告 该子进程的下标,通知其他进程来读取数据
else if( events[i].events & EPOLLIN )
{
int child = 0;
ret = recv( sockfd, ( char* )&child, sizeof( child ), 0 );
printf( "read data from child accross pipe\n" );
if( ret == -1 )
{
continue;
}
else if( ret == 0 )
{
continue;
}
else
{
// 因为数据是共享的,所以只需要通知其他客户端 读取的位置
for( int j = 0; j < user_count; ++j )
{
// 每个客户端的piepefd[0] 都被epoll_wait注册过了,因为每个0 都是向服务器发送数据到来的消息
if( users[j].pipefd[0] != sockfd )
{
printf( "send data to child accross pipe\n" );
send( users[j].pipefd[0], ( char* )&child, sizeof( child ), 0 );
}
}
}
}
}
}
del_resource();
return 0;
}
版权声明:本文为kwinway原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。