【学习SLAM】ORB_SLAM2 双目测试(2)

  • Post author:
  • Post category:其他



双目参数文件详解 (万能P2/Pr)  1

Camera.fx /fy.cx,cy ;2 Camera.bf ; 3 P2(4)/1000 ; 4 ThDepth=50/20

a. Camera.bf中的b指基线baseline(单位:米),

f是焦距fx(x轴和y轴差距不大)

,bf=b*f=T(1)*Camera.fx=P2(4)/1000,


和ThDepth一起决定了深度点的范围:

bf * ThDepth / fx

即大致为b * ThDepth。

基线在双目视觉中出现的比较多,

如ORB-SLAM中的双目示例中的EuRoC.yaml中的bf为47.9,ThDepth为35,fx为435.2,

则有效深度为bf * ThDepth / fx = 47.9*35/435.3=3.85米;

KITTI.yaml中的bf为387.57,ThDepth为40,fx为721.54,

则有效深度为387.57*40/721.54=21.5米。

这里的xtion的IR基线(其实也可以不这么叫)bf为40,

ThDepth为50,fx为558.34,则有效深度为3.58米(官方为3.5米)。

Camera.bf这个参数是个大坑,其为相机的

基线×相机的焦距



orbslam的参数文件中单位是m

而opencv标定文件中的单位是mm

# stereo

baseline

times

fx


Camera.bf: 78.9108236


-1.6275078772819168e+03

*

4.8485678458503560e+02

=

-7.8911e+05

intrinsics.yml

M1: !!opencv-matrix

rows: 3

cols: 3

dt: d

data: [

4.8485678458503560e+02,

0., 3.1984271341779277e+02, 0.,

4.7849342106773673e+02, 2.4258677342694295e+02, 0., 0., 1. ]

————————————————

extrinsics.yml

T: !!opencv-matrix

rows: 3

cols: 1

dt: d

data: [

-1.6275078772819168e+03

, -2.3257053592704903e+01,

2.8278971161131913e+01 ]

————————————————

LEFT.P:=P1:

RIGHT.P:=P2:

RIGHT.P: !!opencv-matrix

rows: 3

cols: 4

dt: d

data: [ 3.9018919929094244e+02, 0., 3.3265590286254883e+02,


-6.3519667606988060e+05


, 0., 3.9018919929094244e+02, 2.3086411857604980e+02, 0., 0., 0., 1., 0. ]

__________  ,


-6.3519667606988060e+05


=T[1]*P2[1]=-1.6275078772819168e+03*3.9018919929094244e+02 = -6.3504e+05

——

是EROC基线吧

—————

T: !!opencv-matrix

rows: 3

cols: 1

dt: d

data: [ -1.6275078772819168e+03, -2.3257053592704903e+01,

2.8278971161131913e+01 ]

————————————————

# Close/Far threshold. Baseline times.

ThDepth: 50

双目相机标定和orbslam2双目参数详解

一,对标orb_slam2 的双目摄像机标定程序(广角、平角都可)

经实测,opencv sample里面自带的双目标定程序(stereo_clib.cpp),对平角相机效果较好,如果你是平角相机跳过本段,直接查看ORBSLAM2的双目配置参数,而stereo_clib.cpp对广角相机效果奇差。

故十里桃园综合了很多帖子,再根据经验给出下述双目代码(基于opencv342测试 opencv3 vs各版本下载地址: 链接: https://pan.baidu.com/s/1f5oAFqs-u15vkD5LNTcxtw 提取码: 2qj9),另用vs19跑程序时有无相应现象,应为vs19bug,在linux下实测可行:

这里要强调的是,双目切勿左右搞反,可对照opencv给出的左右图像来确定自己是否搞反。

再说明一点:请保证图像序号的连续,还要保证图像序列中没有找不到角点的图像。程序会有提示没有成功找到角点的图像序号,删除,重新对图像编号。保证图像序号的连续。图像序号从 1 开始 ,代码中的frameNumber 设置为 你图像序号最大值 +1,如十里桃园一共用58图像序列,则设为59.

先自行标定左右相机的单目畸变参数,填入下面代码中的初始化参数,楼主用的kalibr标定的单目,opencv也可以标定,这个自己解决。

说明一点,单目预标定没必要标的很精确,差不多就成,当然标的精确更好,畸变参数4,5个都可以,单目的所有预标定参数将在下面的代码中进行迭代优化。

修改你的棋盘信息 纵横角点数 还有每个格子的大小 单位mm

广角双目标定代码如下:

#include “opencv2/core/core.hpp”

#include “opencv2/imgproc/imgproc.hpp”

#include “opencv2/calib3d/calib3d.hpp”

#include “opencv2/highgui/highgui.hpp”

#include <vector>

#include <string>

#include <algorithm>

#include <iostream>

#include <iterator>

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <opencv2/opencv.hpp>

#include “cv.h”

#include <cv.hpp>

using namespace std;

using namespace cv;

const int imageWidth = 640;

const int imageHeight = 480;

const int boardWidth = 11;

//横向的角点数目

const int boardHeight = 8;

//纵向的角点数据

const int boardCorner = boardWidth * boardHeight;

//总的角点数据

//相机标定时需要采用的图像帧数

const int squareSize = 49.27;

//标定板黑白格子的大小单位mm

const int frameNumber = 59;

//图像命名 从1 ~ 58(59-1=58)

string folder_ = “./data/”;

string format_R = “R”;

string format_L = “L”;

//例如: R1.jpg   L58.jpg 置于工程目录的 data文件夹下,

const Size boardSize = Size(boardWidth, boardHeight);

//标定板的总内角点

Size imageSize = Size(imageWidth, imageHeight);Mat R, T, E, F;

//R 旋转矢量 T平移矢量 E本征矩阵 F基础矩阵

vector<Mat> rvecs;

//旋转向量

vector<Mat> tvecs;

//平移向量

vector<vector<Point2f>>

imagePointL;

//左边摄像机所有照片角点的坐标集合

vector<vector<Point2f>> imagePointR;

//右边摄像机所有照片角点的坐标集合

vector<vector<Point3f>> objRealPoint;

//各副图像的角点的实际物理坐标集合

vector<Point2f> cornerL;

//左边摄像机某一照片角点坐标集合

vector<Point2f> cornerR;

//右边摄像机某一照片角点坐标集合

Mat rgbImageL, grayImageL;

Mat rgbImageR, grayImageR;

Mat Rl, Rr, Pl, Pr, Q;

//校正旋转矩阵R,

投影矩阵P

重投影矩阵Q (下面有具体的含义解释)

Mat mapLx, mapLy, mapRx, mapRy;

//映射表

Rect validROIL, validROIR;

//图像校正之后,会对图像进行裁剪,这里的validROI就是指裁剪之后的区域

/*事先标定好的左相机的内参矩阵

fx 0 cx

0 fy cy

0 0  1*/

Mat cameraMatrixL = (Mat_<double>(3, 3) << 296.65731645541695, 0, 343.1975436071541,

0, 300.71016643747646, 246.01183552967473,

0, 0, 1);

//这时候就需要你把左右相机单目标定的参数给写上

//获得的畸变参数

Mat distCoeffL = (Mat_<double>(4, 1) << -0.23906272129552558, 0.03436102573634348, 0.001517498429211239, -0.005280695866378259);

/*事先标定好的右相机的内参矩阵

fx 0 cx

0 fy cy

0 0  1*/

Mat cameraMatrixR = (Mat_<double>(3, 3) << 296.92709649579353, 0, 313.1873142211607,

0, 300.0649937238372, 217.0722185756087,

0, 0, 1);

Mat distCoeffR = (Mat_<double>(4, 1) << -0.23753878535018613, 0.03338842944635466, 0.0026030620085220105, -0.0008840126895030034);

void calRealPoint(vector<vector<Point3f>>& obj, int boardwidth, int boardheight, int imgNumber, int squaresize)

{

vector<Point3f> imgpoint;

for (int rowIndex = 0; rowIndex < boardheight; rowIndex++)

{

for (int colIndex = 0; colIndex < boardwidth; colIndex++)

{

imgpoint.push_back(Point3f(rowIndex * squaresize, colIndex * squaresize, 0));

}

}

for (int imgIndex = 0; imgIndex < imgNumber; imgIndex++)

{

obj.push_back(imgpoint);

}

}

void outputCameraParam(void)

{    /*保存数据*/    /*输出数据*/

FileStorage fs(“intrinsics.yml”, FileStorage::WRITE);

//文件存储器的初始化

if (fs.isOpened())

{

fs << “cameraMatrixL” << cameraMatrixL << “cameraDistcoeffL” << distCoeffL << “cameraMatrixR” << cameraMatrixR << “cameraDistcoeffR” << distCoeffR;

fs.release();

cout << “cameraMatrixL=:” << cameraMatrixL << endl << “cameraDistcoeffL=:” << distCoeffL << endl << “cameraMatrixR=:” << cameraMatrixR << endl << “cameraDistcoeffR=:” << distCoeffR << endl;

}

else

{

cout << “Error: can not save the intrinsics!!!!!” << endl;

}

fs.open(“extrinsics.yml”, FileStorage::WRITE);

if (fs.isOpened())

{

fs << “R” << R << “T” << T << “Rl” << Rl << “Rr” << Rr << “Pl” << Pl << “Pr” << Pr << “Q” << Q;

cout << “R=” << R << endl << “T=” << T << endl << “Rl=” << Rl << endl << “Rr=” << Rr << endl << “Pl=” << Pl << endl << “Pr=” << Pr << endl << “Q=” << Q << endl;

fs.release();

}

else

cout << “Error: can not save the extrinsic parameters\n”;

}

int main(int argc, char* argv[])

{

Mat img;

int goodFrameCount = 1;

cout << “Total Images:” << frameNumber << endl;

while (goodFrameCount < frameNumber)

{

cout <<“Current image :” << goodFrameCount << endl;

string     filenamel,filenamer;

//char filename[100];

/*读取左边的图像*/

filenamel = folder_ + format_L+    to_string(goodFrameCount)+”.jpg”;

rgbImageL = imread(filenamel, CV_LOAD_IMAGE_COLOR);

cvtColor(rgbImageL, grayImageL, CV_BGR2GRAY);

/*读取右边的图像*/

//sprintf_s(filename, “D:/dual_camera_clibration/dual/R%d.jpg”, goodFrameCount );

filenamer = folder_ + format_R+    to_string(goodFrameCount)+”.jpg”;

rgbImageR = imread(filenamer, CV_LOAD_IMAGE_COLOR);

cvtColor(rgbImageR, grayImageR, CV_BGR2GRAY);

bool isFindL, isFindR;

isFindL = findChessboardCorners(rgbImageL, boardSize, cornerL);

isFindR = findChessboardCorners(rgbImageR, boardSize, cornerR);

if (isFindL == true && isFindR == true)

//如果两幅图像都找到了所有的角点 则说明这两幅图像是可行的

{

cornerSubPix(grayImageL, cornerL, Size(5, 5), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 20, 0.1));

drawChessboardCorners(rgbImageL, boardSize, cornerL, isFindL);

imshow(“chessboardL”, rgbImageL);

imagePointL.push_back(cornerL);

cornerSubPix(grayImageR, cornerR, Size(5, 5), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 20, 0.1));

drawChessboardCorners(rgbImageR, boardSize, cornerR, isFindR);

imshow(“chessboardR”, rgbImageR);

imagePointR.push_back(cornerR);

goodFrameCount++;

cout << “The image” << goodFrameCount << ” is good” << endl;

}

else

{

cout << “The image “<< goodFrameCount <<“is bad please try again” << endl;

goodFrameCount++;

}

if (waitKey(10) == ‘q’)

{

break;

}

}

/*    计算实际的校正点的三维坐标    根据实际标定格子的大小来设置    */

calRealPoint(objRealPoint, boardWidth, boardHeight, frameNumber-1, squareSize);

cout << “cal real successful” << endl;

/*    标定摄像头    由于左右摄像机分别都经过了单目标定    所以在此处选择flag = CALIB_USE_INTRINSIC_GUESS    */

double rms = stereoCalibrate(objRealPoint, imagePointL, imagePointR,

cameraMatrixL, distCoeffL,

cameraMatrixR, distCoeffR,

Size(imageWidth, imageHeight), R, T, E, F, CV_CALIB_USE_INTRINSIC_GUESS,

TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 80, 1e-5));

cout << “Stereo Calibration done with RMS error = ” << rms << endl;

stereoRectify(cameraMatrixL, distCoeffL, cameraMatrixR, distCoeffR, imageSize, R, T, Rl, Rr, Pl, Pr, Q,        CALIB_ZERO_DISPARITY, -1, imageSize, &validROIL, &validROIR);

initUndistortRectifyMap(cameraMatrixL, distCoeffL, Rl, Pr, imageSize, CV_32FC1, mapLx, mapLy);

initUndistortRectifyMap(cameraMatrixR, distCoeffR, Rr, Pr, imageSize, CV_32FC1, mapRx, mapRy);

Mat rectifyImageL, rectifyImageR;

cout << “debug”<<endl;

for (int num = 1; num < frameNumber;num++)

{


string     filenamel,filenamer;

filenamel = folder_ + format_L+    to_string(num)+”.jpg”;

filenamer = folder_ + format_R+    to_string(num)+”.jpg”;

rectifyImageL = imread(filenamel);

rectifyImageR = imread(filenamer);

imshow(“Rectify Before”, rectifyImageL);

/*    经过remap之后,左右相机的图像已经共面并且行对准了    */

Mat rectifyImageL2, rectifyImageR2;

remap(rectifyImageL, rectifyImageL2, mapLx, mapLy, INTER_LINEAR);

remap(rectifyImageR, rectifyImageR2, mapRx, mapRy, INTER_LINEAR);

imshow(“rectifyImageL”, rectifyImageL2);

imshow(“rectifyImageR”, rectifyImageR2);

/*保存并输出数据*/

outputCameraParam();

/*    把校正结果显示出来 把左右两幅图像显示到同一个画面上 这里只显示了最后一副图像的校正结果。并没有把所有的图像都显示出来    */

Mat canvas;    double sf;

int w, h;

sf = 600. / MAX(imageSize.width, imageSize.height);

w = cvRound(imageSize.width * sf);

h = cvRound(imageSize.height * sf);

canvas.create(h, w * 2, CV_8UC3);

/*左图像画到画布上*/

Mat canvasPart = canvas(Rect(w * 0, 0, w, h));

//得到画布的一部分

resize(rectifyImageL2, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);

//把图像缩放到跟canvasPart一样大小

Rect vroiL(cvRound(validROIL.x*sf), cvRound(validROIL.y*sf),   //获得被截取的区域

cvRound(validROIL.width*sf), cvRound(validROIL.height*sf));

rectangle(canvasPart, vroiL, Scalar(0, 0, 255), 3, 8);

//画上一个矩形

cout << “Painted ImageL” << endl;

/*右图像画到画布上*/

canvasPart = canvas(Rect(w, 0, w, h));

//获得画布的另一部分

resize(rectifyImageR2, canvasPart, canvasPart.size(), 0, 0, INTER_LINEAR);

Rect vroiR(cvRound(validROIR.x * sf), cvRound(validROIR.y*sf),

cvRound(validROIR.width * sf), cvRound(validROIR.height * sf));

rectangle(canvasPart, vroiR, Scalar(0, 255, 0), 3, 8);    cout << “Painted ImageR” << endl;

/*画上对应的线条*/

for (int i = 0; i < canvas.rows; i += 16)

line(canvas, Point(0, i), Point(canvas.cols, i), Scalar(0, 255, 0), 1, 8);

imshow(“rectified”, canvas);

//cout << “wait key” << endl;

waitKey();    //system(“pause”);

}

return 0;

}

标定以前的图像其中一副图像(单纯展示一下我的相机畸变是啥样的):

在这里插入图片描述


双目图像修正结果示例:

在这里插入图片描述

在这里插入图片描述生成的外参extrinsics.yml、内参intrinsics.yml文件:

在这里插入图片描述

二,orb_slam2 双目配置参数详解

参考orbslam2给的EuRoC数据集测试配置文件EuRoC.yaml进行修改。

首先,对EuRoC.yaml对标上述代码生成的extrinsics.yml、intrinsics.yml进行一项项详解,:

%YAML:1.0

#——————————————————————————————–

# Camera Parameters. Adjust them!

#——————————————————————————————–

# Camera calibration and distortion parameters (OpenCV)

Camera.fx: 435.2046959714599

Camera.fy: 435.2046959714599

Camera.cx: 367.4517211914062

Camera.cy: 252.2008514404297

//

这个是 双目相机的参数不是单个的做相机的相机中心跟焦距。

其对应:extrinsics.yml中的 Pr:

例如我的是


Pr: !!

opencv-matrix

rows: 3

cols: 4

dt: d

data: [ 2.8559499458758660e+02, 0., 2.7029193305969238e+02,

-3.9636548646706200e+04, 0., 2.8559499458758660e+02,

2.8112063348293304e+02, 0., 0., 0., 1., 0. ]

对应的修改焦距和相机中心如下:

Camera.fx: 2.8559499458758660e+02

Camera.fy: 2.8559499458758660e+02

Camera.cx: 2.7029193305969238e+02

Camera.cy: 2.8112063348293304e+02

//

Camera.k1: 0.0

Camera.k2: 0.0

Camera.p1: 0.0

Camera.p2: 0.0

//

默认不改,因代码中已做畸变纠正。故均为0.

//

Camera.width: 752

Camera.height: 480

//

相机的图像大小:

我的修改为:

Camera.width: 640

Camera.height: 480

//

# Camera frames per second

Camera.fps: 20.0

# stereo baseline times fx


Camera.bf: 47.90639384423901

//

这个参数是个大坑,其为相机的基线×相机的焦距。

orbslam的参数文件中单位是m

而opencv标定文件中的单位是mm

其数值同样可以在Pr: 中找出 定位在下面矩阵中的-3.9636548646706200e+04 这个数


Pr: !!opencv-matrix

rows: 3

cols: 4

dt: d

data: [ 2.8559499458758660e+02, 0., 2.7029193305969238e+02,

-3.9636548646706200e+04, 0., 2.8559499458758660e+02,

2.8112063348293304e+02, 0., 0., 0., 1., 0. ]

-3.9636548646706200e+

04

就是要填入上面的参数,毫米转为米,求绝对值,填入Camera.bf:  3.9636548646706200e+

01

//

# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)

Camera.RGB: 1

# Close/Far threshold. Baseline times.


ThDepth: 35

//

深度阈值,不是一个精确的数值,大概预估的,可以不改动,要改的话参考下述公式

自己粗略估计一个相机可以良好显示的最大距离值为s = 10  如果fx = 100 Camera.bf = 20

那么 ThDepth = s*fx/Camera.bf = 10 *100 /20 = 50

将你自己的参数带入上述公式 可以得到大概的阈值。


//

#——————————————————————————————–

# Stereo Rectification. Only if you need to pre-rectify the images.

# Camera.fx, .fy, etc must be the same as in LEFT.P

#——————————————————————————————–

LEFT.height: 480

LEFT.width: 752

//

调整为你自己的相机大小

//

LEFT.D: !!opencv-matrix

rows: 1

cols: 5

dt: d

data:[-0.28340811, 0.07395907, 0.00019359, 1.76187114e-05, 0.0]

//

位于intrinsics.yml中的

cameraDistcoeffL: !!opencv-matrix

rows: 5

cols: 1

dt: d

data: [ -2.8632659642339481e-01, 6.6994801733091039e-02,

-5.4763802000265397e-04, -1.4767993829858197e-03,

-6.1039950504068767e-03 ]

填入上面的 LEFT.D: 即可 左图像畸变参数

//

LEFT.K: !!opencv-matrix

rows: 3

cols: 3

dt: d

data: [458.654, 0.0, 367.215, 0.0, 457.296, 248.375, 0.0, 0.0, 1.0]

//

左图像相机内参,可在intrinsics.yml 的cameraMatrixL:找到:

cameraMatrixL: !!opencv-matrix

rows: 3

cols: 3

dt: d

data: [ 2.8424872262658977e+02, 0., 3.3099977082276723e+02, 0.,

2.8535010886794362e+02, 2.5230877864759117e+02, 0., 0., 1. ]

填入LEFT.K:

//

LEFT.R:  !!opencv-matrix

rows: 3

cols: 3

dt: d

data: [0.999966347530033, -0.001422739138722922, 0.008079580483432283, 0.001365741834644127, 0.9999741760894847, 0.007055629199258132, -0.008089410156878961, -0.007044357138835809, 0.9999424675829176]

//

左相机旋转矩阵:extrinsics.yml 中的 Rl:

Rl: !!opencv-matrix

rows: 3

cols: 3

dt: d

data: [ 9.9750705548699170e-01, 3.5207065558213610e-02,

6.1156657760632900e-02, -3.5691910468923047e-02,

9.9933934145707581e-01, 6.8533308118298173e-03,

-6.0874968425042433e-02, -9.0190437917577089e-03,

9.9810465136093429e-01 ]

填入上面的LEFT.R:

//

LEFT.P:  !!opencv-matrix

rows: 3

cols: 4

dt: d

data: [435.2046959714599, 0, 367.4517211914062, 0,  0, 435.2046959714599, 252.2008514404297, 0,  0, 0, 1, 0]

//

投影矩阵:

extrinsics.yml 中的 Pl:

Pl: !!opencv-matrix

rows: 3

cols: 4

dt: d

data: [ 2.8559499458758660e+02, 0., 2.7029193305969238e+02, 0., 0.,

2.8559499458758660e+02, 2.8112063348293304e+02, 0., 0., 0., 1.,

0. ]

填入上面的  LEFT.P:

下面的右侧相机参数配置同上述左侧相机参数配置  orb特征点的参数此处不做叙述。

//

RIGHT.height: 480

RIGHT.width: 752

RIGHT.D: !!opencv-matrix

rows: 1

cols: 5

dt: d

data:[-0.28368365, 0.07451284, -0.00010473, -3.555907e-05, 0.0]

RIGHT.K: !!opencv-matrix

rows: 3

cols: 3

dt: d

data: [457.587, 0.0, 379.999, 0.0, 456.134, 255.238, 0.0, 0.0, 1]

RIGHT.R:  !!opencv-matrix

rows: 3

cols: 3

dt: d

data: [0.9999633526194376, -0.003625811871560086, 0.007755443660172947, 0.003680398547259526, 0.9999684752771629, -0.007035845251224894, -0.007729688520722713, 0.007064130529506649, 0.999945173484644]

RIGHT.P:  !!opencv-matrix

rows: 3

cols: 4

dt: d

data: [435.2046959714599, 0, 367.4517211914062, -47.90639384423901, 0, 435.2046959714599, 252.2008514404297, 0, 0, 0, 1, 0]

//

RIGHT相机的设置与LEFT一致,唯一不同的就是RIGHT.P: 参数,

extrinsics.yml 中的 Pr:如下:

Pr: !!opencv-matrix

rows: 3

cols: 4

dt: d

data: [ 2.8559499458758660e+02, 0., 2.7029193305969238e+02,


-3.9636548646706200e+04

, 0., 2.8559499458758660e+02,

2.8112063348293304e+02, 0., 0., 0., 1., 0. ]

对其进行修改,也就是data中的第4个值,需要转化单位从mm转为m。

所以应该填入RIGHT.P: 的数值为:

data: [ 2.8559499458758660e+02, 0., 2.7029193305969238e+02,

-3.9636548646706200e+01, 0., 2.8559499458758660e+02,

2.8112063348293304e+02, 0., 0., 0., 1., 0. ]

ORB Parameter 没什么争议,较为明了,暂不介绍。

//

#——————————————————————————————–

# ORB Parameters

#——————————————————————————————–

# ORB Extractor: Number of features per image

ORBextractor.nFeatures: 1200

# ORB Extractor: Scale factor between levels in the scale pyramid

ORBextractor.scaleFactor: 1.2

# ORB Extractor: Number of levels in the scale pyramid

ORBextractor.nLevels: 8

# ORB Extractor: Fast threshold

# Image is divided in a grid. At each cell FAST are extracted imposing a minimum response.

# Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST

# You can lower these values if your images have low contrast

ORBextractor.iniThFAST: 20

ORBextractor.minThFAST: 7

#——————————————————————————————–

# Viewer Parameters

#——————————————————————————————–

Viewer.KeyFrameSize: 0.05

Viewer.KeyFrameLineWidth: 1

Viewer.GraphLineWidth: 0.9

Viewer.PointSize:2

Viewer.CameraSize: 0.08

Viewer.CameraLineWidth: 3

Viewer.ViewpointX: 0

Viewer.ViewpointY: -0.7

Viewer.ViewpointZ: -1.8

Viewer.ViewpointF: 500



版权声明:本文为KYJL888原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。