n平方的求和公式_1到N的平方和,立方和公式是怎么推导的?

  • Post author:
  • Post category:其他


展开全部

1、1到N的平方和推导:1²+2²+3²+。。。+n²=n(n+1)(2n+1)/6

由1²+2²+3²+。。。+n²=n(n+1)(2n+1)/6

∵(a+1)³-a³=3a²+3a+1(即(a+1)³=a³+3a²+3a+1)

a=1时:2³-1³=3×636f707932313133353236313431303231363533313334313561321²+3×1+1

a=2时:3³-2³=3×2²+3×2+1

a=3时:4³-3³=3×3²+3×3+1

a=4时:5³-4³=3×4²+3×4+1

……

a=n时:(n+1)³-n³=3×n²+3×n+1

等式两边相加:

(n+1)³-1=3(1²+2²+3²+。。。+n²)+3(1+2+3+。。。+n)+(1+1+1+。。。+1)

3(1²+2²+3²+。。。+n²)=(n+1)³-1-3(1+2+3+。。。+n)-(1+1+1+。。。+1)

3(1²+2²+3²+。。。+n²)=(n+1)³-1-3(1+n)×n÷2-n

6(1²



版权声明:本文为weixin_32285357原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。