常见误区一:“人脸检测”就是“人脸识别”?
事实上,“人脸检测”只是人脸识别完整流程中的一个环节。在用摄像头采集含有人脸的图像或视频流后,首先就需要用人脸检测技术自动检测、提取当中的人脸,随后才能进入人脸图像预处理及最核心的人脸特征提取环节。
但在实际商业化落地中,人脸检测也可独立于人脸识别进行使用。
常见误区二:人脸识别的准确率越高越好吗?
理想状态下,“人脸识别准确率”当然越高越好,但算法在产品化使用时会受到逆光、暗光、强光、识别角度等诸多因素的影响。相同算法,在实验室环境中与不同的实际应用环境中,所表现出的识别准确率都存在一定差异。因此,脱离使用场景单纯考量算法的识别准确率参考价值不大。
业界更多会采用“认假率(FAR,又称误识率,把某人误识为其他人)”和“拒真率(FRR拒真率,本人注册在底库中,但比对相似度达到不预定的值)”,来作为评判算法的依据。另外还有识别速度、活体攻击成功率、人脸检测成功率等维度,也可作为评判算法优劣的参考依据。
尽管FAR和FRR都越低越好,但两个指标是一个跷跷板,一个指标的降低会意味着另一个指标会升高,所以需要实现两者间的平衡。
人脸识别算法一般会设定一个阈值作为评判通过与否的标准,该阈值一般是用分数或者百分比来衡量。当人脸比对的相似度值大于此阈值时,则比对通过,否则比对失败。每个阈值都可以统计
版权声明:本文为weixin_35810956原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。