乘积最大子数组
   
给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
    
     示例 1:
    
    
    输入: [2,3,-2,4]
    
    输出: 6
    
    解释: 子数组 [2,3] 有最大乘积 6。
   
    
     示例 2:
    
    
    输入: [-2,0,-1]
    
    输出: 0
    
    解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
   
    
     思路:
    
    
    方法一:
   
- 对每个元素求出最大连续乘积。
- 将所有元素的最大连续乘积进行比较,求出最大值。
    方法二:动态规划
    
    最小值乘一个负数,则可能成为最大值。
    
    最大值乘一个正数,则可能成为最大值。
   
- 
     从第一个元素至第i个元素的子数组最大连续乘积,可能为第i-1个元素的子数组最大值乘以
 
 第i个元素(正数)
 
 ,第i-1个元素的子数组最小值乘以
 
 第i个元素(负数)
 
 ,第i个元素。即
 
 max_sub_arr[i]=max(max_sub_arr[i-1]*nums[i], min_sub_arr[i-1]*nums[i], nums[i])
- 
     同理,子数组最小连续乘积,可能为第i-1个元素的子数组最大值乘以
 
 第i个元素(负数)
 
 ,第i-1个元素的子数组最小值乘以
 
 第i个元素(正数)
 
 ,第i个元素。
 
 min_sub_arr[i]=min(max_sub_arr[i-1]*nums[i], min_sub_arr[i-1]*nums[i], nums[i])
    
     代码:
    
    
    方法一:
   
class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int cur_max=INT_MIN,max_multi,multi ,size;
        size=nums.size();
        for(int i=0;i<size;i++)
        {
            multi=nums[i];   
            max_multi=nums[i];  
            for(int j=i+1;j<size;j++)
            {
                multi*=nums[j];   //当前连续乘积
                max_multi=max_multi>multi?max_multi:multi;   //单个元素的最大连续乘积
            }
            cur_max=cur_max>max_multi?cur_max:max_multi;   //所有元素的最大连续乘积
        }
        return cur_max;
    }
};
方法二:动态规划
//方法二:动态规划
    int maxProduct(vector<int>& nums) {
        int cur_max;
        vector<int> max_sub_arr(nums.size(),0),min_sub_arr(nums.size(),0);
        max_sub_arr[0]=nums[0];
        min_sub_arr[0]=nums[0];
        
        cur_max=max_sub_arr[0];
        for(int i=1;i<nums.size();i++)
        {
            max_sub_arr[i]=max(max_sub_arr[i-1]*nums[i],min_sub_arr[i-1]*nums[i]);
            max_sub_arr[i]=max(max_sub_arr[i],nums[i]);
            min_sub_arr[i]=min(max_sub_arr[i-1]*nums[i],min_sub_arr[i-1]*nums[i]);
            min_sub_arr[i]=min(min_sub_arr[i],nums[i]);
            cur_max=cur_max>max_sub_arr[i]?cur_max:max_sub_arr[i];
        }        
        return cur_max;             
    }
    
     结果:
    
   
    方法一:用时以及内存消耗都较大
    
    
    
    方法二:动态规划,可以看出用时明显减少。
    
    
    
    
     参考链接:
    
    
    [1]
    
     xiaoju233:乘积最大子数组 【动态规划】
    
   
 
版权声明:本文为qq_41221520原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
