矩阵
矩阵一定是个表格,行列式是个数。
A是个矩阵
而|A|是行列式
(A是个方阵)
*
需要注意
*
四个符号
α,β分别是两个
三维列向量
规律:
列在前,行在后,乘出来是一个矩阵。
行在前,列在后,乘出来是一个数。
这两个矩阵互为转置
两个数相等,就=上面矩阵主对角线元素的和(矩阵的迹)
综上:有
每个二阶行列式都得0
对角矩阵
若对角矩阵在
左
边,则每一
行
用相应的数乘
若对角矩阵在
右
边,则每一
列
用相应的数乘
两个对角矩阵相乘满足交换律
对角矩阵的逆矩阵就是对角上的数取倒数
证明题:
同时在左边乘一个A,同时在右边乘一个A。
这方法简直是妙哇。