LeetCode数据库SQL题目记录(难度:困难)

  • Post author:
  • Post category:其他



难度:困难


目录


185. 部门工资前三高的所有员工


262. 行程和用户


569. 员工薪水中位数


571. 给定数字的频率查询中位数


601. 体育馆的人流量


615. 平均工资:部门与公司比较


618. 学生地理信息报告


1097. 游戏玩法分析 V


1127. 用户购买平台


1159. 市场分析 II


1194. 锦标赛优胜者


1225. 报告系统状态的连续日期



185. 部门工资前三高的所有员工

Employee 表包含所有员工信息,每个员工有其对应的工号 Id,姓名 Name,工资 Salary 和部门编号 DepartmentId 。

+—-+——-+——–+————–+

| Id | Name  | Salary | DepartmentId |

+—-+——-+——–+————–+

| 1  | Joe   | 85000  | 1            |

| 2  | Henry | 80000  | 2            |

| 3  | Sam   | 60000  | 2            |

| 4  | Max   | 90000  | 1            |

| 5  | Janet | 69000  | 1            |

| 6  | Randy | 85000  | 1            |

| 7  | Will  | 70000  | 1            |

+—-+——-+——–+————–+

Department 表包含公司所有部门的信息。

+—-+———-+

| Id | Name     |

+—-+———-+

| 1  | IT       |

| 2  | Sales    |

+—-+———-+

编写一个 SQL 查询,找出每个部门获得前三高工资的所有员工。例如,根据上述给定的表,查询结果应返回:

+————+———-+——–+

| Department | Employee | Salary |

+————+———-+——–+

| IT         | Max      | 90000  |

| IT         | Randy    | 85000  |

| IT         | Joe      | 85000  |

| IT         | Will     | 70000  |

| Sales      | Henry    | 80000  |

| Sales      | Sam      | 60000  |

+————+———-+——–+

解释:

IT 部门中,Max 获得了最高的工资,Randy 和 Joe 都拿到了第二高的工资,Will 的工资排第三。销售部门(Sales)只有两名员工,Henry 的工资最高,Sam 的工资排第二。

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/department-top-three-salaries

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select b.name Department,a.name Employee,a.Salary   
from 
(select *,
       dense_rank() over(partition by DepartmentId order by Salary desc) cnt
from Employee) a,Department b
where a.cnt <= 3
  and a.DepartmentId = b.id


262. 行程和用户

表:Trips

+————-+———-+

| Column Name | Type     |

+————-+———-+

| Id          | int      |

| Client_Id   | int      |

| Driver_Id   | int      |

| City_Id     | int      |

| Status      | enum     |

| Request_at  | date     |

+————-+———-+

Id 是这张表的主键。

这张表中存所有出租车的行程信息。每段行程有唯一 Id ,其中 Client_Id 和 Driver_Id 是 Users 表中 Users_Id 的外键。

Status 是一个表示行程状态的枚举类型,枚举成员为(‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’) 。

表:Users

+————-+———-+

| Column Name | Type     |

+————-+———-+

| Users_Id    | int      |

| Banned      | enum     |

| Role        | enum     |

+————-+———-+

Users_Id 是这张表的主键。

这张表中存所有用户,每个用户都有一个唯一的 Users_Id ,Role 是一个表示用户身份的枚举类型,枚举成员为 (‘client’, ‘driver’, ‘partner’) 。

Banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 (‘Yes’, ‘No’) 。

写一段 SQL 语句查出 “2013-10-01” 至 “2013-10-03” 期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 Banned 为 No 的用户,禁止用户即 Banned 为 Yes 的用户。

取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。

返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。

查询结果格式如下例所示:

Trips 表:

+—-+———–+———–+———+———————+————+

| Id | Client_Id | Driver_Id | City_Id | Status              | Request_at |

+—-+———–+———–+———+———————+————+

| 1  | 1         | 10        | 1       | completed           | 2013-10-01 |

| 2  | 2         | 11        | 1       | cancelled_by_driver | 2013-10-01 |

| 3  | 3         | 12        | 6       | completed           | 2013-10-01 |

| 4  | 4         | 13        | 6       | cancelled_by_client | 2013-10-01 |

| 5  | 1         | 10        | 1       | completed           | 2013-10-02 |

| 6  | 2         | 11        | 6       | completed           | 2013-10-02 |

| 7  | 3         | 12        | 6       | completed           | 2013-10-02 |

| 8  | 2         | 12        | 12      | completed           | 2013-10-03 |

| 9  | 3         | 10        | 12      | completed           | 2013-10-03 |

| 10 | 4         | 13        | 12      | cancelled_by_driver | 2013-10-03 |

+—-+———–+———–+———+———————+————+

Users 表:

+———-+——–+——–+

| Users_Id | Banned | Role   |

+———-+——–+——–+

| 1        | No     | client |

| 2        | Yes    | client |

| 3        | No     | client |

| 4        | No     | client |

| 10       | No     | driver |

| 11       | No     | driver |

| 12       | No     | driver |

| 13       | No     | driver |

+———-+——–+——–+

Result 表:

+————+——————-+

| Day        | Cancellation Rate |

+————+——————-+

| 2013-10-01 | 0.33              |

| 2013-10-02 | 0.00              |

| 2013-10-03 | 0.50              |

+————+——————-+

2013-10-01:

– 共有 4 条请求,其中 2 条取消。

– 然而,Id=2 的请求是由禁止用户(User_Id=2)发出的,所以计算时应当忽略它。

– 因此,总共有 3 条非禁止请求参与计算,其中 1 条取消。

– 取消率为 (1 / 3) = 0.33

2013-10-02:

– 共有 3 条请求,其中 0 条取消。

– 然而,Id=6 的请求是由禁止用户发出的,所以计算时应当忽略它。

– 因此,总共有 2 条非禁止请求参与计算,其中 0 条取消。

– 取消率为 (0 / 2) = 0.00

2013-10-03:

– 共有 3 条请求,其中 1 条取消。

– 然而,Id=8 的请求是由禁止用户发出的,所以计算时应当忽略它。

– 因此,总共有 2 条非禁止请求参与计算,其中 1 条取消。

– 取消率为 (1 / 2) = 0.50

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/trips-and-users

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select a.Request_at Day,
       round(sum(case when a.Status <> 'completed' then 1 else 0 end)/count(*),2) 'Cancellation Rate'
from Trips a 
where not exists(select * from Users b where b.Banned = 'Yes' and b.Role = 'client' and a.Client_Id = b.Users_Id)
  and not exists(select * from Users b where b.Banned = 'Yes' and b.Role = 'driver' and a.Driver_Id = b.Users_Id)
  and Request_at between '2013-10-01' and '2013-10-03'
group by a.Request_at 


569. 员工薪水中位数

Employee 表包含所有员工。Employee 表有三列:员工Id,公司名和薪水。

+—–+————+——–+

|Id   | Company    | Salary |

+—–+————+——–+

|1    | A          | 2341   |

|2    | A          | 341    |

|3    | A          | 15     |

|4    | A          | 15314  |

|5    | A          | 451    |

|6    | A          | 513    |

|7    | B          | 15     |

|8    | B          | 13     |

|9    | B          | 1154   |

|10   | B          | 1345   |

|11   | B          | 1221   |

|12   | B          | 234    |

|13   | C          | 2345   |

|14   | C          | 2645   |

|15   | C          | 2645   |

|16   | C          | 2652   |

|17   | C          | 65     |

+—–+————+——–+

请编写SQL查询来查找每个公司的薪水中位数。挑战点:你是否可以在不使用任何内置的SQL函数的情况下解决此问题。

+—–+————+——–+

|Id   | Company    | Salary |

+—–+————+——–+

|5    | A          | 451    |

|6    | A          | 513    |

|12   | B          | 234    |

|9    | B          | 1154   |

|14   | C          | 2645   |

+—–+————+——–+

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/median-employee-salary

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select Id,Company,Salary from 
(select *,
       row_number() over(partition by company order by Salary) cnt,
       count(id) over (partition by Company) companyCount
from Employee) a
where a.cnt in (floor((a.companyCount+1)/2),floor((a.companyCount+2)/2))


571. 给定数字的频率查询中位数

Numbers 表保存数字的值及其频率。

+———-+————-+

|  Number  |  Frequency  |

+———-+————-|

|  0       |  7          |

|  1       |  1          |

|  2       |  3          |

|  3       |  1          |

+———-+————-+

在此表中,数字为 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 3,所以中位数是 (0 + 0) / 2 = 0。

+——–+

| median |

+——–|

| 0.0000 |

+——–+

请编写一个查询来查找所有数字的中位数并将结果命名为 median 。

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/find-median-given-frequency-of-numbers

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select round(avg(Number),4) median from 
(select Number,
       sum(Frequency) over(order by Number) cnt1,
       sum(Frequency) over(order by Number desc) cnt2,
       sum(Frequency) over() cnt_all
from Numbers) a
where cnt1 >= cnt_all/2
  and cnt2 >= cnt_all/2


601. 体育馆的人流量

表:Stadium

+—————+———+

| Column Name   | Type    |

+—————+———+

| id            | int     |

| visit_date    | date    |

| people        | int     |

+—————+———+

visit_date 是表的主键

每日人流量信息被记录在这三列信息中:序号 (id)、日期 (visit_date)、 人流量 (people)

每天只有一行记录,日期随着 id 的增加而增加

编写一个 SQL 查询以找出每行的人数大于或等于 100 且 id 连续的三行或更多行记录。

返回按 visit_date 升序排列的结果表。

查询结果格式如下所示。

Stadium table:

+——+————+———–+

| id   | visit_date | people    |

+——+————+———–+

| 1    | 2017-01-01 | 10        |

| 2    | 2017-01-02 | 109       |

| 3    | 2017-01-03 | 150       |

| 4    | 2017-01-04 | 99        |

| 5    | 2017-01-05 | 145       |

| 6    | 2017-01-06 | 1455      |

| 7    | 2017-01-07 | 199       |

| 8    | 2017-01-09 | 188       |

+——+————+———–+

Result table:

+——+————+———–+

| id   | visit_date | people    |

+——+————+———–+

| 5    | 2017-01-05 | 145       |

| 6    | 2017-01-06 | 1455      |

| 7    | 2017-01-07 | 199       |

| 8    | 2017-01-09 | 188       |

+——+————+———–+

id 为 5、6、7、8 的四行 id 连续,并且每行都有 >= 100 的人数记录。

请注意,即使第 7 行和第 8 行的 visit_date 不是连续的,输出也应当包含第 8 行,因为我们只需要考虑 id 连续的记录。

不输出 id 为 2 和 3 的行,因为至少需要三条 id 连续的记录。

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/human-traffic-of-stadium

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select * from 
(select a.*
from Stadium a,Stadium b,Stadium c
where a.id = b.id - 1
  and a.id = c.id - 2
  and a.people >= 100
  and b.people >= 100
  and c.people >= 100
union
select a.*
from Stadium a,Stadium b,Stadium c
where a.id = b.id - 1
  and a.id = c.id + 1
  and a.people >= 100
  and b.people >= 100
  and c.people >= 100
union
select a.*
from Stadium a,Stadium b,Stadium c
where a.id = b.id + 1
  and a.id = c.id + 2
  and a.people >= 100
  and b.people >= 100
  and c.people >= 100) d
order by visit_date 


615. 平均工资:部门与公司比较

给如下两个表,写一个查询语句,求出在每一个工资发放日,每个部门的平均工资与公司的平均工资的比较结果 (高 / 低 / 相同)。

表: salary

| id | employee_id | amount | pay_date   |

|—-|————-|——–|————|

| 1  | 1           | 9000   | 2017-03-31 |

| 2  | 2           | 6000   | 2017-03-31 |

| 3  | 3           | 10000  | 2017-03-31 |

| 4  | 1           | 7000   | 2017-02-28 |

| 5  | 2           | 6000   | 2017-02-28 |

| 6  | 3           | 8000   | 2017-02-28 |

employee_id 字段是表 employee 中 employee_id 字段的外键。

| employee_id | department_id |

|————-|—————|

| 1           | 1             |

| 2           | 2             |

| 3           | 2             |

对于如上样例数据,结果为:

| pay_month | department_id | comparison  |

|———–|—————|————-|

| 2017-03   | 1             | higher      |

| 2017-03   | 2             | lower       |

| 2017-02   | 1             | same        |

| 2017-02   | 2             | same        |

解释

在三月,公司的平均工资是 (9000+6000+10000)/3 = 8333.33…

由于部门 ‘1’ 里只有一个 employee_id 为 ‘1’ 的员工,所以部门 ‘1’ 的平均工资就是此人的工资 9000 。因为 9000 > 8333.33 ,所以比较结果是 ‘higher’。

第二个部门的平均工资为 employee_id 为 ‘2’ 和 ‘3’ 两个人的平均工资,为 (6000+10000)/2=8000 。因为 8000 < 8333.33 ,所以比较结果是 ‘lower’ 。

在二月用同样的公式求平均工资并比较,比较结果为 ‘same’ ,因为部门 ‘1’ 和部门 ‘2’ 的平均工资与公司的平均工资相同,都是 7000 。

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/average-salary-departments-vs-company

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
with tmp_a as(
    select pay_date,avg(amount) amount from salary group by pay_date   
)

select distinct left(c.pay_date,7) pay_month,
       c.department_id,
       case when c.amount > d.amount then 'higher'
            when c.amount = d.amount then 'same'
            when c.amount < d.amount then 'lower' end comparison  
from 
(select a.pay_date,b.department_id,avg(a.amount) amount
from salary a,employee b
where a.employee_id = b.employee_id 
group by a.pay_date,b.department_id) c,tmp_a d 
where c.pay_date = d.pay_date  


618. 学生地理信息报告

一所美国大学有来自亚洲、欧洲和美洲的学生,他们的地理信息存放在如下 student 表中。

| name   | continent |

|——–|———–|

| Jack   | America   |

| Pascal | Europe    |

| Xi     | Asia      |

| Jane   | America   |

写一个查询语句实现对大洲(continent)列的 透视表 操作,使得每个学生按照姓名的字母顺序依次排列在对应的大洲下面。输出的标题应依次为美洲(America)、亚洲(Asia)和欧洲(Europe)。

对于样例输入,它的对应输出是:

| America | Asia | Europe |

|———|——|——–|

| Jack    | Xi   | Pascal |

| Jane    |      |        |

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/students-report-by-geography

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select America,Asia,Europe from 
(select row_number() over(order by name) cnt,name as 'America' from student where continent = 'America') a left join
(select row_number() over(order by name) cnt,name as 'Asia' from student where continent = 'Asia') b on a.cnt = b.cnt left join 
(select row_number() over(order by name) cnt,name as 'Europe' from student where continent = 'Europe') c on a.cnt = c.cnt


1097. 游戏玩法分析 V

Activity 活动记录表

+————–+———+

| Column Name  | Type    |

+————–+———+

| player_id    | int     |

| device_id    | int     |

| event_date   | date    |

| games_played | int     |

+————–+———+

(player_id,event_date)是此表的主键

这张表显示了某些游戏的玩家的活动情况

每一行表示一个玩家的记录,在某一天使用某个设备注销之前,登录并玩了很多游戏(可能是 0)

玩家的 安装日期 定义为该玩家的第一个登录日。

玩家的 第一天留存率 定义为:假定安装日期为 X 的玩家的数量为 N ,其中在 X 之后的一天重新登录的玩家数量为 M ,M/N 就是第一天留存率,四舍五入到小数点后两位。

编写一个 SQL 查询,报告所有安装日期、当天安装游戏的玩家数量和玩家的第一天留存率。

查询结果格式如下所示:

Activity 表:

+———–+———–+————+————–+

| player_id | device_id | event_date | games_played |

+———–+———–+————+————–+

| 1         | 2         | 2016-03-01 | 5            |

| 1         | 2         | 2016-03-02 | 6            |

| 2         | 3         | 2017-06-25 | 1            |

| 3         | 1         | 2016-03-01 | 0            |

| 3         | 4         | 2016-07-03 | 5            |

+———–+———–+————+————–+

Result 表:

+————+———-+—————-+

| install_dt | installs | Day1_retention |

+————+———-+—————-+

| 2016-03-01 | 2        | 0.50           |

| 2017-06-25 | 1        | 0.00           |

+————+———-+—————-+

玩家 1 和 3 在 2016-03-01 安装了游戏,但只有玩家 1 在 2016-03-02 重新登录,所以 2016-03-01 的第一天留存率是 1/2=0.50

玩家 2 在 2017-06-25 安装了游戏,但在 2017-06-26 没有重新登录,因此 2017-06-25 的第一天留存率为 0/1=0.00

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/game-play-analysis-v

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select c.event_date install_dt,
       count(*) installs,
       round(count(d.event_date)/count(*),2) Day1_retention 
from 
(select * from Activity a
where (a.player_id,a.event_date) in ( select player_id,min(event_date) from Activity group by player_id )) c left join Activity d 
on c.player_id = d.player_id
and datediff(d.event_date,c.event_date) = 1
group by c.event_date 


1127. 用户购买平台

支出表: Spending

+————-+———+

| Column Name | Type    |

+————-+———+

| user_id     | int     |

| spend_date  | date    |

| platform    | enum    |

| amount      | int     |

+————-+———+

这张表记录了用户在一个在线购物网站的支出历史,该在线购物平台同时拥有桌面端(’desktop’)和手机端(’mobile’)的应用程序。

这张表的主键是 (user_id, spend_date, platform)。

平台列 platform 是一种 ENUM ,类型为(’desktop’, ‘mobile’)。

写一段 SQL 来查找每天 仅 使用手机端用户、仅 使用桌面端用户和 同时 使用桌面端和手机端的用户人数和总支出金额。

查询结果格式如下例所示:

Spending table:

+———+————+———-+——–+

| user_id | spend_date | platform | amount |

+———+————+———-+——–+

| 1       | 2019-07-01 | mobile   | 100    |

| 1       | 2019-07-01 | desktop  | 100    |

| 2       | 2019-07-01 | mobile   | 100    |

| 2       | 2019-07-02 | mobile   | 100    |

| 3       | 2019-07-01 | desktop  | 100    |

| 3       | 2019-07-02 | desktop  | 100    |

+———+————+———-+——–+

Result table:

+————+———-+————–+————-+

| spend_date | platform | total_amount | total_users |

+————+———-+————–+————-+

| 2019-07-01 | desktop  | 100          | 1           |

| 2019-07-01 | mobile   | 100          | 1           |

| 2019-07-01 | both     | 200          | 1           |

| 2019-07-02 | desktop  | 100          | 1           |

| 2019-07-02 | mobile   | 100          | 1           |

| 2019-07-02 | both     | 0            | 0           |

+————+———-+————–+————-+

在 2019-07-01, 用户1 同时 使用桌面端和手机端购买, 用户2 仅 使用了手机端购买,而用户3 仅 使用了桌面端购买。

在 2019-07-02, 用户2 仅 使用了手机端购买, 用户3 仅 使用了桌面端购买,且没有用户 同时 使用桌面端和手机端购买。

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/user-purchase-platform

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
with tmp as
(
    select spend_date,'desktop' platform from Spending group by spend_date 
    union
    select spend_date,'mobile' platform from Spending group by spend_date
    union
    select spend_date,'both' platform from Spending group by spend_date  
),tmp_a as
(select a.spend_date,'mobile' platform,sum(a.amount) total_amount,count(distinct a.user_id) total_users from Spending a where not exists(select * from Spending b where a.user_id = b.user_id and a.spend_date = b.spend_date and b.platform = 'desktop') and a.platform = 'mobile' group by a.spend_date)
,tmp_b as 
(select a.spend_date,'desktop' platform,sum(a.amount) total_amount,count(distinct a.user_id) total_users from Spending a where not exists(select * from Spending b where a.user_id = b.user_id and a.spend_date = b.spend_date and b.platform = 'mobile') and a.platform = 'desktop' group by a.spend_date)
,tmp_c as
(select a.spend_date,'both' platform,sum(a.amount) total_amount,count(distinct a.user_id) total_users from Spending a where (exists(select * from Spending b where a.user_id = b.user_id and a.spend_date = b.spend_date and b.platform = 'mobile') and a.platform = 'desktop') or (exists(select * from Spending b where a.user_id = b.user_id and a.spend_date = b.spend_date and b.platform = 'desktop') and a.platform = 'mobile') group by a.spend_date)

select a.*,coalesce(b.total_amount,0) total_amount,coalesce(b.total_users,0) total_users
from tmp a left join  
(select * from tmp_a
union 
select * from tmp_b
union 
select * from tmp_c) b
on a.spend_date = b.spend_date
and a.platform = b.platform


1159. 市场分析 II

表: Users

+—————-+———+

| Column Name    | Type    |

+—————-+———+

| user_id        | int     |

| join_date      | date    |

| favorite_brand | varchar |

+—————-+———+

user_id 是该表的主键

表中包含一位在线购物网站用户的个人信息,用户可以在该网站出售和购买商品。

表: Orders

+—————+———+

| Column Name   | Type    |

+—————+———+

| order_id      | int     |

| order_date    | date    |

| item_id       | int     |

| buyer_id      | int     |

| seller_id     | int     |

+—————+———+

order_id 是该表的主键

item_id 是 Items 表的外键

buyer_id 和 seller_id 是 Users 表的外键

表: Items

+—————+———+

| Column Name   | Type    |

+—————+———+

| item_id       | int     |

| item_brand    | varchar |

+—————+———+

item_id 是该表的主键

写一个 SQL 查询确定每一个用户按日期顺序卖出的第二件商品的品牌是否是他们最喜爱的品牌。如果一个用户卖出少于两件商品,查询的结果是 no 。

题目保证没有一个用户在一天中卖出超过一件商品

下面是查询结果格式的例子:

Users table:

+———+————+—————-+

| user_id | join_date  | favorite_brand |

+———+————+—————-+

| 1       | 2019-01-01 | Lenovo         |

| 2       | 2019-02-09 | Samsung        |

| 3       | 2019-01-19 | LG             |

| 4       | 2019-05-21 | HP             |

+———+————+—————-+

Orders table:

+———-+————+———+———-+———–+

| order_id | order_date | item_id | buyer_id | seller_id |

+———-+————+———+———-+———–+

| 1        | 2019-08-01 | 4       | 1        | 2         |

| 2        | 2019-08-02 | 2       | 1        | 3         |

| 3        | 2019-08-03 | 3       | 2        | 3         |

| 4        | 2019-08-04 | 1       | 4        | 2         |

| 5        | 2019-08-04 | 1       | 3        | 4         |

| 6        | 2019-08-05 | 2       | 2        | 4         |

+———-+————+———+———-+———–+

Items table:

+———+————+

| item_id | item_brand |

+———+————+

| 1       | Samsung    |

| 2       | Lenovo     |

| 3       | LG         |

| 4       | HP         |

+———+————+

Result table:

+———–+——————–+

| seller_id | 2nd_item_fav_brand |

+———–+——————–+

| 1         | no                 |

| 2         | yes                |

| 3         | yes                |

| 4         | no                 |

+———–+——————–+

id 为 1 的用户的查询结果是 no,因为他什么也没有卖出

id为 2 和 3 的用户的查询结果是 yes,因为他们卖出的第二件商品的品牌是他们自己最喜爱的品牌

id为 4 的用户的查询结果是 no,因为他卖出的第二件商品的品牌不是他最喜爱的品牌

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/market-analysis-ii

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
with tmp as(
select * from 
(select item_id,seller_id,
       rank() over(partition by seller_id order by order_date) cnt
from Orders) a 
where cnt = 2)

select d.user_id seller_id,
       case when d.item_brand is not null and d.item_brand = d.favorite_brand then 'yes' else 'no' end 2nd_item_fav_brand 
from 
(select a.*,b.item_id,c.item_brand
from Users a left join tmp b 
on a.user_id = b.seller_id left join Items c 
on b.item_id = c.item_id) d 


1194. 锦标赛优胜者

Players 玩家表

+————-+——-+

| Column Name | Type  |

+————-+——-+

| player_id   | int   |

| group_id    | int   |

+————-+——-+

player_id 是此表的主键。

此表的每一行表示每个玩家的组。

Matches 赛事表

+—————+———+

| Column Name   | Type    |

+—————+———+

| match_id      | int     |

| first_player  | int     |

| second_player | int     |

| first_score   | int     |

| second_score  | int     |

+—————+———+

match_id 是此表的主键。

每一行是一场比赛的记录,first_player 和 second_player 表示该场比赛的球员 ID。

first_score 和 second_score 分别表示 first_player 和 second_player 的得分。

你可以假设,在每一场比赛中,球员都属于同一组。

每组的获胜者是在组内累积得分最高的选手。如果平局,player_id 最小 的选手获胜。

编写一个 SQL 查询来查找每组中的获胜者。

查询结果格式如下所示

Players 表:

+———–+————+

| player_id | group_id   |

+———–+————+

| 15        | 1          |

| 25        | 1          |

| 30        | 1          |

| 45        | 1          |

| 10        | 2          |

| 35        | 2          |

| 50        | 2          |

| 20        | 3          |

| 40        | 3          |

+———–+————+

Matches 表:

+————+————–+—————+————-+————–+

| match_id   | first_player | second_player | first_score | second_score |

+————+————–+—————+————-+————–+

| 1          | 15           | 45            | 3           | 0            |

| 2          | 30           | 25            | 1           | 2            |

| 3          | 30           | 15            | 2           | 0            |

| 4          | 40           | 20            | 5           | 2            |

| 5          | 35           | 50            | 1           | 1            |

+————+————–+—————+————-+————–+

Result 表:

+———–+————+

| group_id  | player_id  |

+———–+————+

| 1         | 15         |

| 2         | 35         |

| 3         | 40         |

+———–+————+

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/tournament-winners

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

with tmp as(
select first_player player,first_score score from Matches 
union all 
select second_player player,second_score score from Matches)

select group_id,player_id from 
(select c.group_id,b.player player_id,
       rank() over(partition by group_id order by score desc,player_id) cnt
from 
(select a.player,sum(a.score) score
from tmp a
group by a.player) b,Players c 
where b.player = c.player_id) d
where d.cnt = 1


1225. 报告系统状态的连续日期

Table: Failed

+————–+———+

| Column Name  | Type    |

+————–+———+

| fail_date    | date    |

+————–+———+

该表主键为 fail_date。

该表包含失败任务的天数.

Table: Succeeded

+————–+———+

| Column Name  | Type    |

+————–+———+

| success_date | date    |

+————–+———+

该表主键为 success_date。

该表包含成功任务的天数.

系统 每天 运行一个任务。每个任务都独立于先前的任务。任务的状态可以是失败或是成功。

编写一个 SQL 查询 2019-01-01 到 2019-12-31 期间任务连续同状态 period_state 的起止日期(start_date 和 end_date)。即如果任务失败了,就是失败状态的起止日期,如果任务成功了,就是成功状态的起止日期。

最后结果按照起始日期 start_date 排序

查询结果样例如下所示:

Failed table:

+——————-+

| fail_date         |

+——————-+

| 2018-12-28        |

| 2018-12-29        |

| 2019-01-04        |

| 2019-01-05        |

+——————-+

Succeeded table:

+——————-+

| success_date      |

+——————-+

| 2018-12-30        |

| 2018-12-31        |

| 2019-01-01        |

| 2019-01-02        |

| 2019-01-03        |

| 2019-01-06        |

+——————-+


Result table:

+————–+————–+————–+

| period_state | start_date   | end_date     |

+————–+————–+————–+

| succeeded    | 2019-01-01   | 2019-01-03   |

| failed       | 2019-01-04   | 2019-01-05   |

| succeeded    | 2019-01-06   | 2019-01-06   |

+————–+————–+————–+

结果忽略了 2018 年的记录,因为我们只关心从 2019-01-01 到 2019-12-31 的记录

从 2019-01-01 到 2019-01-03 所有任务成功,系统状态为 “succeeded”。

从 2019-01-04 到 2019-01-05 所有任务失败,系统状态为 “failed”。

从 2019-01-06 到 2019-01-06 所有任务成功,系统状态为 “succeeded”。

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/report-contiguous-dates

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

with tmp as(
select 'failed' period_state,fail_date task_date from Failed 
union all
select 'succeeded',success_date task_date from Succeeded)

select period_state,min(task_date) start_date,max(task_date) end_date         
from 
(select a.*,
       subdate(task_date,row_number() over(partition by a.period_state order by task_date)) diff
from tmp a) b 
where task_date between '2019-01-01' and '2019-12-31'
group by period_state,diff
order by start_date



版权声明:本文为thomashhs12原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。