吴恩达深度学习课程1编程作业

  • Post author:
  • Post category:其他




吴恩达测试



测试一

在这里插入图片描述

import math
from public_tests import *
def basic_sigmoid(x):
    s = 1./(1+np.exp(-x))
    return s

在这里插入图片描述

在这里插入图片描述

def sigmoid_derivate(x):
    s = sigmoid(x)
    ds = s*(1-s)
    return ds

在这里插入图片描述

def image2vector(image):
    v = image.reshape(image.shape[0]*image.shape[1].image[2],1)
    return v

在这里插入图片描述

def normalize_rows(x):
    x_norm = None
    x_norm = np.linalg.norm(x,ord=2,axis=1,keepdims=True)
    x = x/x_norm
    return x

在这里插入图片描述

def softmax(x):
    x_exp = np.exp(x)
    x_sum = np.sum(x_exp,axis=1,keepdims=True)
    s = x_exp/x_sum
    return s

在这里插入图片描述

def L1(yhat,y):
    loss = sum(abs(yhat-y))
    return losss

在这里插入图片描述

def L2(yhat,y):
    loss = np.dot((yhat-y),(yhat-y))
    return loss



测试二

只限于理解,实现是缺少对应的包和数据的

# 导入数据
X,Y = load_planar_dataset()
# 矩阵重塑
shape_X = X.shape  #(2,400)
shape_Y = Y.shape  #(1,400)
m = shape_X[1]    # 400

在这里插入图片描述

在这里插入图片描述

# 定义每层的参数
def layer_sizes(X,Y):
    n_x = X.shape[0]
    n_h = 4
    n_y = Y.shape[0]
    return(n_x,n_h,h_y)
   
# 初始花参数
def initialize_parameters(n_x,n_h,n_y):
    W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h)*0.01
    b2 = np.zeros((n_y,1)))
    parameters = ["W1":W1,
                  "W2":W2,
                  "b1":b1,
                  "b2":b2]
    return parameters
# 前向传播
def forward_propagation(X,parameters):
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    Z1 = np.dot(W1,X)+b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2,A1)+b2
    A2 = sigmoid(Z2)
    cache = {"Z1":Z1,
             "Z2":Z2,
             "A1":A1,
             "A2":A2}
    return A2,cache
# 损失函数
def compute_cost(A2,Y):
    m = Y.shape[1]
    logprobs = np.multiply(np.log(A2),Y)+np.multiply((1-Y),np.log(1-A2))
    cost = -np.sum(logprobs)/m
    return cost

在这里插入图片描述

def backward_propagation(parameters,cache,X,Y):
    m =X.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    A1 = cache["A1"]
    A2 = cache["A2"]
    dZ2 = A2 - Y
    
    dW2 = np.dot(dZ2,A1.T)*(1/m)
    db2 = np.sum(dZ2,axis = 1,keepdims = True)*(1/m)
    dZ1 = dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1,2)) 
    dW1 = np.dot(dZ1,X.T)*(1/m)
    db1 = np.sum(dZ1,axis = 1,keepdims = True)*(1/m)
    
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    
    return grads
# 更新权重
def update_parameters(parameters,grads,learning_rate = 1.2):
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    dW1 = grads["dW1"]
    dW2 = grads["dW2"]
    db1 = grads["db1"]
    db2 = grads["db2"]
     W1 = W1 -learning_rate *dW1
    W2 = W2 -learning_rate *dW2
    b1 = b1 - learning_rate *db1
    b2 = b2 - learning_rate *db2
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
     return parameters
# 创建模型
def nn_model(X,Y,n_h,num_iterations=10000,print_cost=False):
    np.random.seed(3)
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    for i in range(0, num_iterations):
        A2, cache = forward_propagation(X, parameters)
        cost = compute_cost(A2, Y)
        grads = backward_propagation(parameters, cache, X, Y)
        parameters = update_parameters(parameters, grads, learning_rate=1.2)
         if print_cost and i % 1000 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))

    return parameters

在这里插入图片描述

def predict(parameters,X):
    A2, cache = forward_propagation(X, parameters)
    predictions = (A2>0.5)
    return predictions



测试三

在这里插入图片描述

# 初始化
def initialize_parameters(n_x,n_h,n_y):
     np.random.seed(1)
     W1 = np.random.randn(n_h,n_x)*0.01
    b1 = np.zeros((n_h,1))
    W2 = np.random.randn(n_y,n_h)*0.01
    b2 = np.zeros((n_y,1))
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters    

在这里插入图片描述

在这里插入图片描述

# 深层初始化
def initialize_parameters_deep(layer_dims):
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims) # number of layers in the network
    for l in range(1, L):
        parameters["W" + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
        parameters["b" + str(l)] = np.zeros((layer_dims[l], 1))
        return parameters       

在这里插入图片描述

# 前向传播 A[0] = x
def linear_forward(A,W,b):
    Z = np.dot(W,A)+b
    cache = (A, W, b)
    
    return Z, cache

在这里插入图片描述

def linear_activation_forward(A_prev,W,b,activation):
    if activation == "sigmoid":
       Z,linear_cache = linear_forward(A_prev,W,b)
       A,activation_cache = sigmoid(Z)
    elif activation == "relu":
       Z,linear_cache = linear_forward(A_prev,W,b)
       A,activation_cache = relu(Z)
    cache = (linear_cache, activation_cache)
    return A, cache
    

在这里插入图片描述

# 深层前向传播
def L_model_forward(X, parameters):
    caches = []
    A = X
    L = len(parameters) // 2              # number of layers in the neural network
    for l in range(1, L):
        A_prev = A 
        A,cache = linear_activation_forward(A_prev,parameters['W'+str(l)],parameters['b'+str(l)],"relu")
        caches.append(cache)
    AL,cache = linear_activation_forward(A,parameters['W'+str(L)],parameters['b'+str(L)],"sigmoid")
    caches.append(cache)   
    return AL, caches 

在这里插入图片描述

def compute_cost(AL, Y):
    m = Y.shape[1]
    logprobs = np.multiply(np.log(AL),Y)+  np.multiply((1-Y),np.log(1-AL))
    cost = - np.sum(logprobs)/m 
    return cost

在这里插入图片描述

在这里插入图片描述

# 反向传播
def linear_backward(dZ, cache):
    A_prev, W, b = cache
    m = A_prev.shape[1]
    dW = 1 / m * np.dot(dZ, cache[0].T)
    db = 1 / m * np.sum(dZ, axis = 1, keepdims = True)
    dA_prev = np.dot(cache[1].T, dZ)
    return dA_prev, dW, db

在这里插入图片描述

# 线性激活层反向传播
def linear_activation_backward(dA, cache, activation):
    linear_cache, activation_cache = cache
    
    if activation == "relu":
       dZ = relu_backward(dA, activation_cache) 
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "sigmoid":
         dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
     return dA_prev, dW, db     

在这里插入图片描述

#L层的反向传播
def L_model_backward(AL, Y, caches):
    grads = {}
    L = len(caches) # the number of layers
    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    current_cache=caches[-1]
    dA_prev_temp, dW_temp, db_temp =linear_activation_backward(dAL,current_cache,activation="sigmoid")
    
    grads["dA"+str(L-1)]=dA_prev_temp
    grads["dW"+str(L)]=dW_temp
    grads["db"+str(L)]=db_temp
    for l in reversed(range(L-1)):
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp =linear_activation_backward( grads["dA" + str(l+1)] , current_cache, "relu")
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(l + 1)] =dW_temp
        grads["db" + str(l + 1)] =db_temp
   return grads 

在这里插入图片描述

# 参数更新
def update_parameters(params, grads, learning_rate):
    parameters = params.copy()
    L = len(parameters) // 2 # number of layers in the neural network
    for l in range(L):
        parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l + 1)]
         return parameters
 



测试四

train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
m_train = train_x_orig.shape[0]  #209
num_px = train_x_orig.shape[1]   #64
m_test = test_x_orig.shape[0]    #50

Number of training examples: 209
Number of testing examples: 50
Each image is of size: (64, 64, 3)
train_x_orig shape: (209, 64, 64, 3)
train_y shape: (1, 209)
test_x_orig shape: (50, 64, 64, 3)
test_y shape: (1, 50)


# reshape
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T  
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T

train_x's shape: (12288, 209)
test_x's shape: (12288, 50)
# 两层神经网络
n_x = 12288     # num_px * num_px * 3
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)
learning_rate = 0.0075

def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
     np.random.seed(1)
    grads = {}
    costs = []                              # to keep track of the cost
    m = X.shape[1]                           # number of examples
    (n_x, n_h, n_y) = layers_dims
    # 参数初始化
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    for i in range(0, num_iterations):
        # 正向传播
        A1,cache1 = linear_activation_forward(X,W1,b1,"relu")
        A2,cache2 = linear_activation_forward(A1,W2,b2,"sigmoid")
        # 代价函数
        cost = compute_cost(A2,Y)
        # 初始化反向传播
        dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
        # 反向传播
        dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
        dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
        grads['dW1'] = dW1
        grads['db1'] = db1
        grads['dW2'] = dW2
        grads['db2'] = db2
        # 参数更新
        parameters = update_parameters(parameters, grads, learning_rate)
         W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        # 输出代价函数
        if print_cost and i % 100 == 0 or i == num_iterations - 1:
            print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
        if i % 100 == 0 or i == num_iterations:
            costs.append(cost)

    return parameters, costs

# 训练模型
parameters, costs = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
#预测
predictions_train = predict(train_x, train_y, parameters)
predictions_test = predict(test_x, test_y, parameters)
# L层神经网络 L=4
layers_dims = [12288, 20, 7, 5, 1]
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
     np.random.seed(1)
    costs = []      
    parameters = initialize_parameters_deep(layers_dims)
    for i in range(0, num_iterations):
        AL, caches = L_model_forward(X, parameters)
        cost = compute_cost(AL, Y)
        grads = L_model_backward(AL, Y, caches)
        parameters = update_parameters(parameters, grads, learning_rate)
        if print_cost and i % 100 == 0 or i == num_iterations - 1:
            print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
        if i % 100 == 0 or i == num_iterations:
            costs.append(cost)
    
    return parameters, costs
    
# 训练模型
parameters, costs = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)    
# 预测模型
pred_train = predict(train_x, train_y, parameters)
pred_test = predict(test_x, test_y, parameters)



版权声明:本文为weixin_56368033原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。