1.6 Invertible Matrices

  • Post author:
  • Post category:其他


可逆矩阵的引入和介绍就很有意思,如果



P

P






P





是一系列初等矩阵的乘积,那么



B

=

P

A

B=PA






B




=








P


A









A

A






A





是row-equivalent的,所以



A

A






A









B

B






B





也是row-equivalent的,故有一个一系列初等矩阵的乘积



Q

Q






Q





使得



A

=

Q

B

A=QB






A




=








Q


B





,如果



A

=

I

m

A=I_m






A




=









I










m





















,那么就会有



B

=

P

,

I

m

=

Q

B

=

Q

P

B=P,I_m=QB=QP






B




=








P


,





I










m




















=








Q


B




=








Q


P





,所以通过



P

P






P





得到了一个



Q

Q






Q





,因而有inverse matrix的概念,inverse可以有左有右,不必同时存在,但如果同时存在,必相等。

Theorem 10

说明:矩阵的逆矩阵也可逆且逆逆得自身,两个(可推广到有限个)逆矩阵乘积也可逆。

Theorem 11

则证明初等矩阵是可逆的,其逆矩阵就是单位矩阵在该初等矩阵对应初等行变换的逆变换下的矩阵,计算也很简单。


Theorem 12

得出了重要的三个等价关系:可逆、与单位矩阵row-equivalent、是一系列初等矩阵的乘积,其两个重要推论,一是把



A

A






A





变成单位阵的行变换可以同时把



I

I






I





变成



A

1

A^{-1}







A














1













,二是两矩阵row-equivalent当且仅当一个矩阵等于某可逆阵左乘另一个矩阵(因为可逆阵就是一系列初等矩阵的乘积)。

Theorem 13

是另一组重要等价关系:



A

A






A





可逆、



A

X

=

0

AX=0






A


X




=








0





只有零解、



A

X

=

Y

AX=Y






A


X




=








Y





对每一个



Y

Y






Y





都有解。这两个定理说明了可逆阵的威力。推论一是如果是方阵,那么光有左逆或右逆就代表可逆。推论二是方阵的乘积可逆代表每个方阵均可逆,即Theorem 10在方阵约束下增强了。

这一节最后要说明的两个事,一个是如何用初等行变换或者初等矩阵乘积求逆,另一个是行的事情都可以复制到列上,只是初等矩阵会发生变化,且从左乘变成右乘。



Exercises



1. Let





A

=

[

1

2

1

0

1

0

3

5

1

2

1

1

]

A=\begin{bmatrix}1&2&1&0\\-1&0&3&5\\1&-2&1&1\end{bmatrix}






A




=
























































1











1








1





























2








0











2





























1








3








1





























0








5








1






























































Find a row-reduced echelon matrix



R

R






R





which is row-equivalent to



A

A






A





and an invertible



3

×

3

3\times 3






3




×








3





matrix



P

P






P





such that



R

=

P

A

R=PA






R




=








P


A





.


solution

: We perform row operations on



A

=

[

A

Y

]

A’=\begin{bmatrix}A&Y\end{bmatrix}







A
























=










[













A





























Y




















]







with



Y

=

[

y

1

,

y

2

,

y

3

]

T

Y=[y_1,y_2,y_3 ]^T






Y




=








[



y










1


















,





y










2


















,





y










3



















]










T












, thus





A

=

[

1

2

1

0

y

1

1

0

3

5

y

2

1

2

1

1

y

3

]

[

1

2

1

0

y

1

0

2

4

5

y

2

+

y

1

0

4

0

1

y

3

y

1

]

[

1

2

1

0

y

1

0

2

4

5

y

2

+

y

1

0

0

8

11

2

y

2

+

y

3

+

y

1

]

[

1

2

1

0

y

1

0

1

2

5

2

1

2

(

y

2

+

y

1

)

0

0

1

11

8

1

8

(

2

y

2

+

y

3

+

y

1

)

]

[

1

2

0

11

8

7

8

y

1

1

4

y

2

1

8

y

3

0

1

0

1

4

1

4

(

y

1

y

3

)

0

0

1

11

8

1

8

(

2

y

2

+

y

3

+

y

1

)

]

[

1

0

0

7

8

3

8

y

1

1

4

y

2

+

3

8

y

3

0

1

0

1

4

1

4

(

y

1

y

3

)

0

0

1

11

8

1

8

(

2

y

2

+

y

3

+

y

1

)

]

\begin{aligned}A’&=\begin{bmatrix}1&2&1&0&y_1\\-1&0&3&5&y_2\\1&-2&1&1&y_3 \end{bmatrix}\rightarrow\begin{bmatrix}1&2&1&0&y_1\\0&2&4&5&y_2+y_1\\0&-4&0&1&y_3-y_1 \end{bmatrix}\\&\rightarrow\begin{bmatrix}1&2&1&0&y_1\\0&2&4&5&y_2+y_1\\0&0&8&11&2y_2+y_3+y_1 \end{bmatrix}\rightarrow\begin{bmatrix}1&2&1&0&y_1\\0&1&2&\frac{5}{2}&\frac{1}{2} (y_2+y_1 )\\0&0&1&\frac{11}{8}&\frac{1}{8} (2y_2+y_3+y_1 ) \end{bmatrix}\\&\rightarrow\begin{bmatrix}1&2&0&-\frac{11}{8}&\frac{7}{8} y_1-\frac{1}{4} y_2-\frac{1}{8} y_3\\0&1&0&-\frac{1}{4}&\frac{1}{4} (y_1-y_3 )\\0&0&1&\frac{11}{8}&\frac{1}{8} (2y_2+y_3+y_1 ) \end{bmatrix}\rightarrow\begin{bmatrix}1&0&0&-\frac{7}{8}&\frac{3}{8} y_1-\frac{1}{4} y_2+\frac{3}{8} y_3\\0&1&0&-\frac{1}{4}&\frac{1}{4} (y_1-y_3 )\\0&0&1&\frac{11}{8}&\frac{1}{8}(2y_2+y_3+y_1 )\end{bmatrix}\end{aligned}

















A





























































=




















































1











1








1





























2








0











2





























1








3








1





























0








5








1






























y










1

























y










2

























y










3
































































































































1








0








0





























2








2











4





























1








4








0





























0








5








1






























y










1

























y










2




















+





y










1

























y










3


























y










1








































































































































1








0








0





























2








2








0





























1








4








8





























0








5








1


1






























y










1

























y










2




















+





y










1
























2



y










2




















+





y










3




















+





y










1
































































































































1








0








0





























2








1








0





























1








2








1





























0




















2
















5







































8
















1


1

















































y










1




































2
















1





















(



y










2




















+





y










1


















)




















8
















1





















(


2



y










2




















+





y










3




















+





y










1


















)
























































































































1








0








0





























2








1








0





























0








0








1












































8
















1


1










































4
















1







































8
















1


1




























































8
















7






















y










1





































4
















1






















y










2





































8
















1






















y










3




































4
















1





















(



y










1


























y










3


















)




















8
















1





















(


2



y










2




















+





y










3




















+





y










1


















)
















































































































1








0








0





























0








1








0





























0








0








1












































8
















7










































4
















1







































8
















1


1




























































8
















3






















y










1





































4
















1






















y










2




















+
















8
















3






















y










3




































4
















1





















(



y










1


























y










3


















)




















8
















1





















(


2



y










2




















+





y










3




















+





y










1


















)















































































thus



R

=

[

1

0

0

7

8

0

1

0

1

4

0

0

1

11

8

]

R=\begin{bmatrix}1&0&0&-\frac{7}{8}\\0&1&0&-\frac{1}{4}\\0&0&1&\frac{11}{8}\end{bmatrix}






R




=
























































1








0








0





























0








1








0





























0








0








1












































8
















7










































4
















1







































8
















1


1















































































, and the matrix



P

P






P





s.t.



R

=

P

A

R=PA






R




=








P


A





is



P

=

[

3

/

8

1

/

4

3

/

8

1

/

4

0

1

/

4

1

/

8

1

/

4

1

/

8

]

P=\begin{bmatrix}3/8&-1/4&3/8\\1/4&0&-1/4\\1/8&1/4&1/8\end{bmatrix}






P




=
























































3


/


8








1


/


4








1


/


8
































1


/


4








0








1


/


4





























3


/


8











1


/


4








1


/


8





























































2. Do Exercise 1, but with





A

=

[

2

0

i

1

3

i

i

1

1

]

A=\begin{bmatrix}2&0&i\\1&-3&-i\\i&1&1\end{bmatrix}






A




=
























































2








1








i





























0











3








1





























i











i








1































































solution

: We perform row operations on



A

=

[

A

Y

]

A’=\begin{bmatrix}A&Y\end{bmatrix}







A
























=










[













A





























Y




















]







with



Y

=

[

y

1

,

y

2

,

y

3

]

T

Y=[y_1,y_2,y_3 ]^T






Y




=








[



y










1


















,





y










2


















,





y










3



















]










T












, thus





A

=

[

2

0

i

y

1

1

3

i

y

2

i

1

1

y

3

]

[

1

0

i

2

y

1

2

0

3

3

i

2

y

2

y

1

2

0

1

3

2

y

3

i

2

y

1

]

[

1

0

i

2

y

1

2

0

1

3

2

y

3

i

2

y

1

0

0

9

3

i

2

3

y

3

3

i

+

1

2

y

1

+

y

2

]

[

1

0

i

2

y

1

2

0

1

3

2

y

3

i

2

y

1

0

0

1

3

+

i

15

(

3

y

3

3

i

+

1

2

y

1

+

y

2

)

]

\begin{aligned}A’&=\begin{bmatrix}2&0&i&y_1\\1&-3&-i&y_2\\i&1&1&y_3 \end{bmatrix}\rightarrow\begin{bmatrix}1&0&\frac{i}{2}&\frac{y_1}{2}\\0&-3&-\frac{3i}{2}&y_2-\frac{y_1}{2}\\0&1&\frac{3}{2}&y_3-\frac{i}{2} y_1 \end{bmatrix}\\&\rightarrow\begin{bmatrix}1&0&\frac{i}{2}&\frac{y_1}{2}\\0&1&\frac{3}{2}&y_3-\frac{i}{2} y_1\\0&0&\frac{9-3i}{2}&3y_3-\frac{3i+1}{2} y_1+y_2 \end{bmatrix}\rightarrow\begin{bmatrix}1&0&\frac{i}{2}&\frac{y_1}{2}\\0&1&\frac{3}{2}&y_3-\frac{i}{2} y_1\\0&0&1&\frac{3+i}{15} \left(3y_3-\frac{3i+1}{2} y_1+y_2 \right)\end{bmatrix}\end{aligned}

















A























































=




















































2








1








i





























0











3








1





























i











i








1






























y










1

























y










2

























y










3
































































































































1








0








0





























0











3








1









































2
















i










































2
















3


i







































2
















3




























































2

















y










1












































y










2





































2

















y










1












































y










3





































2
















i






















y










1








































































































































1








0








0





























0








1








0









































2
















i







































2
















3







































2
















9





3


i




























































2

















y










1












































y










3





































2
















i






















y










1
























3



y










3





































2
















3


i


+


1






















y










1




















+





y










2
































































































































1








0








0





























0








1








0









































2
















i







































2
















3



























1









































2

















y










1












































y










3





































2
















i






















y










1




































1


5
















3


+


i

























(



3



y










3





































2
















3


i


+


1






















y










1




















+





y










2



















)

















































































It’s easy to see



R

=

I

R=I






R




=








I





and to calculate



P

P






P





, we see



A

[

I

Y

]

A’\rightarrow\begin{bmatrix}I&Y’\end{bmatrix}







A



































[













I






























Y








































]







, in which





Y

=

[

y

1

2

2

(

3

+

i

)

15

i

(

3

y

3

3

i

+

1

2

y

1

+

y

2

)

y

3

i

2

y

1

2

(

3

+

i

)

45

(

3

y

3

3

i

+

1

2

y

1

+

y

2

)

3

+

i

15

(

3

y

3

3

i

+

1

2

y

1

+

y

2

)

]

=

[

1

2

+

2

(

3

+

i

)

(

3

i

+

1

)

30

i

2

(

3

+

i

)

15

i

2

(

3

+

i

)

5

i

i

2

+

(

3

+

i

)

(

3

i

+

1

)

45

2

(

3

+

i

)

45

1

2

(

3

+

i

)

15

(

3

+

i

)

(

3

i

+

1

)

30

3

+

i

15

3

+

i

5

]

[

y

1

y

2

y

3

]

\begin{aligned}Y’&=\begin{bmatrix}\dfrac{y_1}{2}-\dfrac{2(3+i)}{15i} \left(3y_3-\dfrac{3i+1}{2} y_1+y_2 \right)\\y_3-\dfrac{i}{2} y_1-\dfrac{2(3+i)}{45} \left(3y_3-\dfrac{3i+1}{2} y_1+y_2 \right)\\\dfrac{3+i}{15} \left(3y_3-\dfrac{3i+1}{2} y_1+y_2\right)\end{bmatrix}\\&=\begin{bmatrix}\dfrac{1}{2}+\dfrac{2(3+i)(3i+1)}{30i}&-\dfrac{2(3+i)}{15i}&-\dfrac{2(3+i)}{5i}\\-\dfrac{i}{2}+\dfrac{(3+i)(3i+1)}{45}&-\dfrac{2(3+i)}{45}&1-\dfrac{2(3+i)}{15}\\-\dfrac{(3+i)(3i+1)}{30}&\dfrac{3+i}{15}&\dfrac{3+i}{5}\end{bmatrix}\begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix}\end{aligned}

















Y























































=





















































































































2















y










1






















































1


5


i














2


(


3




+




i


)
























(



3



y










3




































2














3


i




+




1





















y










1




















+





y










2



















)











y










3




































2














i





















y










1




































4


5














2


(


3




+




i


)
























(



3



y










3




































2














3


i




+




1





















y










1




















+





y










2



















)





















1


5














3




+




i
























(



3



y










3




































2














3


i




+




1





















y










1




















+





y










2



















)



























































































































=



































































































2














1






















+















3


0


i














2


(


3




+




i


)


(


3


i




+




1


)








































2














i






















+















4


5














(


3




+




i


)


(


3


i




+




1


)








































3


0














(


3




+




i


)


(


3


i




+




1


)





























































1


5


i














2


(


3




+




i


)








































4


5














2


(


3




+




i


)





































1


5














3




+




i





























































5


i














2


(


3




+




i


)


























1




















1


5














2


(


3




+




i


)





































5














3




+




i


































































































































































y










1

























y










2

























y










3































































































thus



P

P






P





is the matrix on the left.



3. For each of the two matrices





[

2

5

1

4

1

2

6

4

1

]

,

[

1

1

2

3

2

4

0

1

2

]

\begin{bmatrix}2&5&-1\\4&-1&2\\6&4&1\end{bmatrix},\quad\begin{bmatrix}1&-1&2\\3&2&4\\0&1&-2\end{bmatrix}






















































2








4








6





























5











1








4
































1








2








1



























































,






















































1








3








0
































1








2








1





























2








4











2






























































use elementary row operations to discover whether it is invertible, and to find the inverse in case it is.


solution

: As





[

2

5

1

1

0

0

4

1

2

0

1

0

6

4

1

0

0

1

]

[

2

5

1

1

0

0

0

11

4

2

1

0

0

11

4

3

0

1

]

[

2

5

1

1

0

0

0

11

4

2

1

0

0

0

0

1

1

1

]

\begin{aligned}\begin{bmatrix}2&5&-1&1&0&0\\4&-1&2&0&1&0\\6&4&1&0&0&1\end{bmatrix}&\rightarrow\begin{bmatrix}2&5&-1&1&0&0\\0&-11&4&-2&1&0\\0&-11&4&-3&0&1\end{bmatrix}\\&\rightarrow\begin{bmatrix}2&5&-1&1&0&0\\0&-11&4&-2&1&0\\0&0&0&-1&-1&1\end{bmatrix}\end{aligned}
































































2








4








6





























5











1








4
































1








2








1





























1








0








0





























0








1








0





























0








0








1















































































































































2








0








0





























5











1


1











1


1
































1








4








4





























1











2











3





























0








1








0





























0








0








1
























































































































2








0








0





























5











1


1








0
































1








4








0





























1











2











1





























0








1











1





























0








0








1















































































the first matrix is not invertible.

As





[

1

1

2

1

0

0

3

2

4

0

1

0

0

1

2

0

0

1

]

[

1

1

2

1

0

0

0

5

2

3

1

0

0

1

2

0

0

1

]

[

1

1

2

1

0

0

0

1

2

0

0

1

0

0

8

3

1

5

]

[

1

1

0

7

/

4

1

/

4

5

/

4

0

1

0

3

/

4

1

/

4

1

/

4

0

0

1

3

/

8

1

/

8

5

/

8

]

[

1

0

0

1

0

1

0

1

0

3

/

4

1

/

4

1

/

4

0

0

1

3

/

8

1

/

8

5

/

8

]

\begin{aligned}&\begin{bmatrix}1&-1&2&1&0&0\\3&2&4&0&1&0\\0&1&-2&0&0&1\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&2&1&0&0\\0&5&-2&-3&1&0\\0&1&-2&0&0&1\end{bmatrix}\\&\rightarrow\begin{bmatrix}1&-1&2&1&0&0\\0&1&-2&0&0&1\\0&0&8&-3&1&-5\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&0&7/4&-1/4&5/4\\0&1&0&-3/4&1/4&-1/4\\0&0&1&-3/8&1/8&-5/8\end{bmatrix}\\&\rightarrow\begin{bmatrix}1&0&0&1&0&1\\0&1&0&-3/4&1/4&-1/4\\0&0&1&-3/8&1/8&-5/8\end{bmatrix}\end{aligned}







































































































1








3








0
































1








2








1





























2








4











2





























1








0








0





























0








1








0





























0








0








1
















































































































1








0








0
































1








5








1





























2











2











2





























1











3








0





























0








1








0





























0








0








1
























































































































1








0








0
































1








1








0





























2











2








8





























1








0











3





























0








0








1





























0








1











5
















































































































1








0








0
































1








1








0





























0








0








1





























7


/


4











3


/


4











3


/


8
































1


/


4








1


/


4








1


/


8





























5


/


4











1


/


4











5


/


8
























































































































1








0








0





























0








1








0





























0








0








1





























1











3


/


4











3


/


8





























0








1


/


4








1


/


8





























1











1


/


4











5


/


8















































































the second matrix is invertible and its inverse is



[

1

0

1

3

/

4

1

/

4

1

/

4

3

/

8

1

/

8

5

/

8

]

\begin{bmatrix}1&0&1\\-3/4&1/4&-1/4\\-3/8&1/8&-5/8\end{bmatrix}






















































1











3


/


4











3


/


8





























0








1


/


4








1


/


8





























1











1


/


4











5


/


8





























































4. Let





A

=

[

5

0

0

1

5

0

0

1

5

]

A=\begin{bmatrix}5&0&0\\1&5&0\\0&1&5\end{bmatrix}






A




=
























































5








1








0





























0








5








1





























0








0








5






























































For which



X

X






X





does there exist a scalar



c

c






c





such that



A

X

=

c

X

AX=cX






A


X




=








c


X





?


solution

: If



X

=

0

X=0






X




=








0





, then



A

X

=

c

X

AX=cX






A


X




=








c


X





for any scalar



c

c






c





. If



X

0

X\neq 0






X







































=









0





, then the system



(

A

c

I

)

X

=

0

(A-cI)X=0






(


A













c


I


)


X




=








0





has non trivial solutions, if



c

5

c\neq 5






c







































=









5





we have





[

5

c

0

0

1

5

c

0

0

1

5

c

]

[

1

0

0

0

5

c

0

0

1

5

c

]

[

1

1

1

]

\begin{bmatrix}5-c&0&0\\1&5-c&0\\0&1&5-c \end{bmatrix} \rightarrow \begin{bmatrix}1&0&0\\0&5-c&0\\0&1&5-c \end{bmatrix}\rightarrow \begin{bmatrix}1&&\\&1&\\&&1 \end{bmatrix}






















































5









c








1








0





























0








5









c








1





























0








0








5









c




















































































































1








0








0





























0








5









c








1





























0








0








5









c




















































































































1















































1















































1






























































thus the system



(

A

c

I

)

X

=

0

(A-cI)X=0






(


A













c


I


)


X




=








0





has only trivial solutions, a contradiction. If



c

=

5

c=5






c




=








5





, then as long as



X

=

(

0

,

0

,

k

)

,

k

0

X=(0,0,k),k\neq 0






X




=








(


0


,




0


,




k


)


,




k







































=









0





, we have



A

X

=

5

X

AX=5X






A


X




=








5


X





. In conclusion we can say for



X

=

(

0

,

0

,

k

)

,

k

R

X=(0,0,k),k\in R






X




=








(


0


,




0


,




k


)


,




k













R





does there exists a scalar



c

c






c





s.t.



A

X

=

c

X

AX=cX






A


X




=








c


X





.



5. Discover whether





A

=

[

1

2

3

4

0

2

3

4

0

0

3

4

0

0

0

4

]

A=\begin{bmatrix}1&2&3&4\\0&2&3&4\\0&0&3&4\\0&0&0&4\end{bmatrix}






A




=










































































1








0








0








0





























2








2








0








0





























3








3








3








0





























4








4








4








4
















































































is invertible, and find



A

1

A^{-1}







A














1













if it exists.


solution

:



A

A






A





is invertible. we have





[

1

2

3

4

1

0

0

0

0

2

3

4

0

1

0

0

0

0

3

4

0

0

1

0

0

0

0

4

0

0

0

1

]

[

1

2

3

0

1

0

0

1

0

2

3

0

0

1

0

1

0

0

3

0

0

0

1

1

0

0

0

4

0

0

0

1

]

[

1

2

0

0

1

0

1

1

0

2

0

0

0

1

1

1

0

0

3

0

0

0

1

1

0

0

0

4

0

0

0

1

]

[

1

0

0

0

1

1

1

1

0

2

0

0

0

1

1

1

0

0

3

0

0

0

1

1

0

0

0

4

0

0

0

1

]

[

1

0

0

0

1

1

1

1

0

1

0

0

0

1

/

2

1

/

2

1

/

2

0

0

1

0

0

0

1

/

3

1

/

3

0

0

0

1

0

0

0

1

/

4

]

\begin{aligned}\begin{bmatrix}1&2&3&4&1&0&0&0\\0&2&3&4&0&1&0&0\\0&0&3&4&0&0&1&0\\0&0&0&4&0&0&0&1\end{bmatrix}&\rightarrow \begin{bmatrix}1&2&3&0&1&0&0&-1\\0&2&3&0&0&1&0&-1\\0&0&3&0&0&0&1&-1\\0&0&0&4&0&0&0&1\end{bmatrix}\\&\rightarrow \begin{bmatrix}1&2&0&0&1&0&-1&-1\\0&2&0&0&0&1&-1&-1\\0&0&3&0&0&0&1&-1\\0&0&0&4&0&0&0&1\end{bmatrix}\\&\rightarrow \begin{bmatrix}1&0&0&0&1&-1&-1&-1\\0&2&0&0&0&1&-1&-1\\0&0&3&0&0&0&1&-1\\0&0&0&4&0&0&0&1\end{bmatrix}\\&\rightarrow \begin{bmatrix}1&0&0&0&1&-1&-1&-1\\0&1&0&0&0&1/2&-1/2&-1/2\\0&0&1&0&0&0&1/3&-1/3\\0&0&0&1&0&0&0&1/4\end{bmatrix}\end{aligned}


















































































1








0








0








0





























2








2








0








0





























3








3








3








0





























4








4








4








4





























1








0








0








0





























0








1








0








0





























0








0








1








0





























0








0








0








1































































































































































































1








0








0








0





























2








2








0








0





























3








3








3








0





























0








0








0








4





























1








0








0








0





























0








1








0








0





























0








0








1








0
































1











1











1








1




























































































































































1








0








0








0





























2








2








0








0





























0








0








3








0





























0








0








0








4





























1








0








0








0





























0








1








0








0
































1











1








1








0
































1











1











1








1




























































































































































1








0








0








0





























0








2








0








0





























0








0








3








0





























0








0








0








4





























1








0








0








0
































1








1








0








0
































1











1








1








0
































1











1











1








1




























































































































































1








0








0








0





























0








1








0








0





























0








0








1








0





























0








0








0








1





























1








0








0








0
































1








1


/


2








0








0
































1











1


/


2








1


/


3








0
































1











1


/


2











1


/


3








1


/


4

































































































thus



A

1

=

[

1

1

1

1

0

1

/

2

1

/

2

1

/

2

0

0

1

/

3

1

/

3

0

0

0

1

/

4

]

A^{-1}=\begin{bmatrix}1&-1&-1&-1\\0&1/2&-1/2&-1/2\\0&0&1/3&-1/3\\0&0&0&1/4\end{bmatrix}







A














1












=










































































1








0








0








0
































1








1


/


2








0








0
































1











1


/


2








1


/


3








0
































1











1


/


2











1


/


3








1


/


4















































































6. Suppose



A

A






A





is a



2

×

1

2\times 1






2




×








1





matrix and that



B

B






B





is a



1

×

2

1\times 2






1




×








2





matrix. Prove that



C

=

A

B

C=AB






C




=








A


B





is not invertible.


solution

: Suppose



A

=

[

a

b

]

,

B

=

[

c

d

]

A=\begin{bmatrix}a\\b\end{bmatrix},B=\begin{bmatrix}c&d\end{bmatrix}






A




=










[













a








b




















]






,




B




=










[













c





























d




















]







, then



C

=

A

B

=

[

a

c

a

d

b

c

b

d

]

C=AB=\begin{bmatrix}ac&ad\\bc&bd\end{bmatrix}






C




=








A


B




=










[













a


c








b


c





























a


d








b


d




















]







, use elementary row operation one can eliminate one of



C

C






C





’s rows if



a

0

a\neq 0






a







































=









0





, and the first row of



C

C






C





vanishes if



a

=

0

a=0






a




=








0





, thus



C

C






C





can’t be row equivalent to the identity matrix, and



C

C






C





is not invertible.



7. Let



A

A






A





be an



n

×

n

n\times n






n




×








n





(square) matrix. Prove the following two statements:



(a) If



A

A






A





is invertible and



A

B

=

0

AB=0






A


B




=








0





for some



n

×

n

n\times n






n




×








n





matrix



B

B






B





, then



B

=

0

B=0






B




=








0





.



(b) If



A

A






A





is not invertible, then there exists an



n

×

n

n\times n






n




×








n





matrix



B

B






B





such that



A

B

=

0

AB=0






A


B




=








0





but



B

0

B\neq 0






B







































=









0





.


solution

: (a) We have



P

A

=

I

PA=I






P


A




=








I





for some



P

P






P





, thus



B

=

I

B

=

P

A

B

=

P

0

=

0

B=IB=PAB=P0=0






B




=








I


B




=








P


A


B




=








P


0




=








0





.

(b) The system



A

X

=

0

AX=0






A


X




=








0





has non trivial solutions, let



x

0

x\neq 0






x







































=









0





be a solution and let



B

=

[

x

0

0

]

B=\begin{bmatrix}x&0&\dots&0\end{bmatrix}






B




=










[













x





























0



























































0




















]







, then



A

B

=

0

AB=0






A


B




=








0





.



8. Let





A

=

[

a

b

c

d

]

A=\begin{bmatrix}a&b\\c&d\end{bmatrix}






A




=










[













a








c





























b








d




















]









Prove, using elementary row operations, that



A

A






A





is invertible if and only if



(

a

d

b

c

)

0

(ad-bc)\neq0






(


a


d













b


c


)







































=









0





.


solution

: If



c

=

0

c=0






c




=








0





, then to make



A

A






A





invertible if and only if



(

a

0

)

(

d

0

)

(a\neq 0)\wedge (d\neq 0)






(


a







































=









0


)













(


d







































=









0


)





, which is equivalent to



a

d

=

a

d

b

c

0

ad=ad-bc\neq 0






a


d




=








a


d













b


c







































=









0





.

If



c

0

c\neq 0






c







































=









0





, then use elementary row operations, we have





A

=

[

a

b

c

d

]

[

a

c

b

c

a

c

a

d

]

[

a

c

b

c

0

a

d

b

c

]

[

a

b

0

a

d

b

c

]

,

a

0

A

=

[

a

b

c

d

]

[

c

d

a

b

]

=

[

c

d

0

b

]

,

a

=

0

A=\begin{bmatrix}a&b\\c&d\end{bmatrix}\rightarrow\begin{bmatrix}ac&bc\\ac&ad\end{bmatrix}\rightarrow\begin{bmatrix}ac&bc\\0&ad-bc\end{bmatrix}\rightarrow\begin{bmatrix}a&b\\0&ad-bc\end{bmatrix},\quad a\neq 0 \\ A=\begin{bmatrix}a&b\\c&d\end{bmatrix}\rightarrow\begin{bmatrix}c&d\\a&b\end{bmatrix}=\begin{bmatrix}c&d\\0&b\end{bmatrix},\quad a=0






A




=










[













a








c





























b








d




















]

















[













a


c








a


c





























b


c








a


d




















]

















[













a


c








0





























b


c








a


d









b


c




















]

















[













a








0





























b








a


d









b


c




















]






,






a







































=









0








A




=










[













a








c





























b








d




















]

















[













c








a





























d








b




















]






=










[













c








0





























d








b




















]






,






a




=








0







thus if



A

A






A





is invertible, we shall have



a

d

b

c

0

ad-bc\neq 0






a


d













b


c







































=









0





. Conversely if



a

d

b

c

0

ad-bc\neq 0






a


d













b


c







































=









0





, then in the case



a

0

a\neq 0






a







































=









0





we directly have



A

A






A





is invertible since



[

a

b

0

a

d

b

c

]

\begin{bmatrix}a&b\\0&ad-bc\end{bmatrix}








[













a








0





























b








a


d









b


c




















]







is row equivalent to



I

2

I_2







I










2





















, in the case



a

=

0

a=0






a




=








0





, notice then



b

c

0

bc\neq 0






b


c







































=









0





and thus



b

0

b\neq 0






b







































=









0





, so



[

c

d

0

b

]

\begin{bmatrix}c&d\\0&b\end{bmatrix}








[













c








0





























d








b




















]







is row equivalent to



I

2

I_2







I










2





















, in either case,



A

A






A





is invertible.



9. An



n

×

n

n\times n






n




×








n





matrix



A

A






A





is called upper-triangular if



A

i

j

=

0

,

i

>

j

A_{ij}=0,i>j







A











i


j





















=








0


,




i




>








j





, that is, if every entry below the main diagonal is 0. Prove that an upper-triangular (square) matrix is invertible if and only if every entry on its main diagonal is different from 0.


solution

: If every entry on its main diagonal is not



0

0






0





, then we use row



n

n






n





to eliminate the last column to



e

n

e_n







e










n





















, and next use row



n

1

n-1






n













1





to eliminate column



n

1

n-1






n













1





to



e

n

1

e_{n-1}







e











n





1






















, continuing we make



A

A






A





to



I

n

I_n







I










n





















, thus



A

A






A





is invertible.

Conversely, suppose



A

A






A





is invertible and assume some entry on its main diagonal is



0

0






0





, let



k

k






k





be the largest integer s.t.



A

k

k

=

0

A_{kk}=0







A











k


k





















=








0





, then if



k

=

n

k=n






k




=








n





then row



n

n






n





is all



0

0






0





, if not then repeating the same steps in the previous paragragh



n

k

n-k






n













k





times, we can get row



k

k






k





to be all



0

0






0





, then



A

A






A





is not invertible, as the matrix can’t be row-equivalent to



I

n

I_n







I










n





















.



10. Prove the following generalization of Exercise 6. If



A

A






A





is an



m

×

n

m\times n






m




×








n





matrix,



B

B






B





is an



n

×

m

n\times m






n




×








m





matrix and



n

<

m

n<m






n




<








m





, then



A

B

AB






A


B





is not invertible.


solution

: Since



n

<

m

n<m






n




<








m





, if row-reduce



A

A






A





to an row-deduced echelon form, the last row must be all



0

0






0





, i.e. there’s an



m

×

m

m\times m






m




×








m





invertible matrix



P

P






P





s.t.



P

A

=

C

PA=C






P


A




=








C





, where the last row of



C

C






C





is all



0

0






0





, now assume



A

B

AB






A


B





is invertible, as it’s square we can have



D

D






D





be it’s right inverse, so



A

B

D

=

I

ABD=I






A


B


D




=








I





, thus



P

A

B

D

=

C

B

D

=

P

PABD=CBD=P






P


A


B


D




=








C


B


D




=








P





, now the last row of



C

C






C





is



0

0






0





, means the last row of



C

B

D

CBD






C


B


D





,or



P

P






P





, is



0

0






0





, this contradicts



P

P






P





being invertible.



11. Let



A

A






A





be an



m

×

n

m\times n






m




×








n





matrix. Show that by means of a finite number of elementary row and/or column operations one can pass from



A

A






A





to a matrix



R

R






R





which is both ‘row-reduced echelon’ and ‘column-reduced echelon’, i.e.



R

i

j

=

0

R_{ij}=0







R











i


j





















=








0





if



i

j

i\neq j






i







































=









j





,



R

i

i

=

1

,

1

i

r

,

R

i

i

=

0

R_{ii}=1,1\leq i\leq r, R_{ii}=0







R











i


i





















=








1


,




1













i













r


,





R











i


i





















=








0





if



i

>

r

i>r






i




>








r





. Show that



R

=

P

A

Q

R=PAQ






R




=








P


A


Q





, where



P

P






P





is an invertible



m

×

m

m\times m






m




×








m





matrix and



Q

Q






Q





is an invertible



n

×

n

n\times n






n




×








n





matrix.


solution

: We’ve proved use elementary row operations we can get a row-reduced echelon matrix



R

R’







R

























such that



R

=

P

A

R’=PA







R
























=








P


A





, where



P

P






P





is an invertible



m

×

m

m\times m






m




×








m





matrix. Starting from



R

R’







R

























we can use elementary column operations to get a column-reduced echelon matrix



R

R






R





, and an invertible



n

×

n

n\times n






n




×








n





matrix



Q

Q






Q





s.t.



R

=

R

Q

R=R’Q






R




=









R






















Q





, thus



R

=

P

A

Q

R=PAQ






R




=








P


A


Q





.



12. The result of Example 16 suggests that perhaps the matrix





[

1

1

2

1

n

1

2

1

3

1

n

+

1

1

n

1

n

+

1

1

2

n

1

]

\begin{bmatrix}1&\dfrac{1}{2}&\cdots&\dfrac{1}{n}\\ \dfrac{1}{2}&\dfrac{1}{3}&\cdots&\dfrac{1}{n+1}\\\vdots&\vdots&&\vdots\\\dfrac{1}{n}&\dfrac{1}{n+1}&\cdots&\dfrac{1}{2n-1}\end{bmatrix}





















































































































1



















2














1


















































n














1


























































2














1





































3














1


















































n




+




1














1
















































































































n














1





































n




+




1














1


















































2


n









1














1















































































































































is invertible and



A

1

A^{-1}







A














1













has integer entries. Can you prove that?


solution

: This matrix is called the Hilbert matrix, it’s invertible and its inverse is given by



B

=

(

B

i

j

)

B=(B_{ij})






B




=








(



B











i


j



















)





, where





B

i

j

=

(

1

)

i

+

j

(

i

+

j

+

1

)

(

i

+

j

i

)

(

i

+

j

j

)

(

n

+

i

+

1

n

j

)

(

n

+

j

+

1

n

i

)

B_ij=(-1)^{i+j} (i+j+1)\binom{i+j}{i}\binom{i+j}{j}\binom{n+i+1}{n-j}\binom{n+j+1}{n-i}







B










i


















j




=








(





1



)











i


+


j










(


i




+








j




+








1


)




(











i








i




+




j


















)






(











j








i




+




j


















)






(











n









j








n




+




i




+




1


















)






(











n









i








n




+




j




+




1


















)









One can direct compute the product



A

B

AB






A


B





and verify that



A

B

=

I

AB=I






A


B




=








I





.



版权声明:本文为christangdt原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。