MSK调制原理
MSK
(Minimum Frequency Shift Keying)最小移频键控。个人理解,最小频率变化的调频率调制,即占用频谱带宽最小的调频调制。其相位连续,幅度恒定,频谱利用率高,抗噪声能力强。
MSK信号表达如下,其中
T
b
T_b
T
b
为码元周期,
a
k
a_k
a
k
为第
k
k
k
个码元其取值为
±
1
\pm1
±
1
,
φ
k
\varphi_k
φ
k
为第
k
k
k
个码元的相位常数。
S
M
S
K
(
t
)
=
cos
(
ω
c
t
+
π
∗
a
k
2
T
b
t
+
φ
k
)
=
{
S
s
(
t
)
=
cos
(
ω
m
t
+
φ
k
)
=
cos
[
(
ω
c
+
π
2
T
b
)
t
+
φ
k
]
,
a
k
=
1
S
m
(
t
)
=
cos
(
ω
s
t
+
φ
k
)
=
cos
[
(
ω
c
−
π
2
T
b
)
t
+
φ
k
]
,
a
k
=
−
1
其
中
k
T
b
≤
t
≤
(
k
+
1
)
T
b
S_{MSK} (t) = \cos(\omega_ct+\frac{\pi*a_k}{2T_b}t+\varphi_k)= \begin{cases} S_s(t)=\cos(\omega_mt+\varphi_k)=\cos[(\omega_c+\frac{\pi}{2T_b})t+\varphi_k],a_k=1\\ S_m(t)=\cos(\omega_st+\varphi_k)=\cos[(\omega_c-\frac{\pi}{2T_b})t+\varphi_k],a_k = -1\\ \end{cases} 其中\quad kT_b \leq t\leq(k+1)T_b
S
M
S
K
(
t
)
=
cos
(
ω
c
t
+
2
T
b
π
∗
a
k
t
+
φ
k
)
=
{
S
s
(
t
)
=
cos
(
ω
m
t
+
φ
k
)
=
cos
[
(
ω
c
+
2
T
b
π
)
t
+
φ
k
]
,
a
k
=
1
S
m
(
t
)
=
cos
(
ω
s
t
+
φ
k
)
=
cos
[
(
ω
c
−
2
T
b
π
)
t
+
φ
k
]
,
a
k
=
−
1
其
中
k
T
b
≤
t
≤
(
k
+
1
)
T
b
调制带宽:
Δ
f
=
f
m
−
f
s
=
1
2
π
π
T
b
=
1
2
T
b
=
R
b
2
\Delta f = f_m-f_s = \frac{1}{2\pi}\frac{\pi}{T_b}=\frac{1}{2T_b}=\frac{R_b}{2}
Δ
f
=
f
m
−
f
s
=
2
π
1
T
b
π
=
2
T
b
1
=
2
R
b
调制指数:
h
=
Δ
f
R
b
=
0.5
h= \frac{\Delta f}{R_b}=0.5
h
=
R
b
Δ
f
=
0
.
5
。(
R
b
=
1
T
b
R_b = \frac{1}{T_b}
R
b
=
T
b
1
为码速率)
h
h
h
越小,占用带宽越小(相同码速率下),带宽效率越高。
为什么h=0.5是最小调制指数
-
两个信号
Sm
(
t
)
S_m(t)
S
m
(
t
)
与
Ss
(
t
)
S_s(t)
S
s
(
t
)
的波形相关系数为:
ρ=
1
E
b
∫
0
T
b
S
m
(
t
)
S
s
(
t
)
d
t
=
1
E
b
∫
0
T
b
cos
(
ω
m
t
)
cos
(
ω
s
t
)
d
t
=
1
2
E
b
∫
0
T
b
cos
[
(
ω
m
+
ω
s
)
t
]
+
cos
[
(
ω
m
−
ω
s
)
t
]
d
t
=
1
2
E
b
[
1
ω
m
+
ω
s
sin
(
ω
m
+
ω
s
)
t
∣
0
T
b
+
1
ω
m
−
ω
s
sin
(
ω
m
−
ω
s
)
t
∣
0
T
b
]
=
1
2
E
b
[
sin
(
ω
m
+
ω
s
)
T
b
ω
m
+
ω
s
+
sin
(
ω
m
−
ω
s
)
T
b
ω
m
−
ω
s
]
\begin{aligned} \rho &=\frac{1}{E_b}\int_{0}^{T_b}S_m(t)S_s(t)\mathrm{d}t\\ &= \frac{1}{E_b}\int_{0}^{T_b}\cos(\omega_mt)\cos(\omega_st)\mathrm{d}t\\ &=\frac{1}{2E_b}\int_{0}^{T_b}\cos[(\omega_m+\omega_s)t]+\cos[(\omega_m-\omega_s)t]\mathrm{d}t\\ &=\frac{1}{2E_b}[\frac{1}{\omega_m+\omega_s}\sin(\omega_m+\omega_s)t|_{0}^{T_b}+\frac{1}{\omega_m-\omega_s}\sin(\omega_m-\omega_s)t|_{0}^{T_b}]\\ &=\frac{1}{2E_b}[\frac{\sin(\omega_m+\omega_s)T_b}{\omega_m+\omega_s} + \frac{\sin(\omega_m-\omega_s)T_b}{\omega_m-\omega_s}] \end{aligned}
ρ
=
E
b
1
∫
0
T
b
S
m
(
t
)
S
s
(
t
)
d
t
=
E
b
1
∫
0
T
b
cos
(
ω
m
t
)
cos
(
ω
s
t
)
d
t
=
2
E
b
1
∫
0
T
b
cos
[
(
ω
m
+
ω
s
)
t
]
+
cos
[
(
ω
m
−
ω
s
)
t
]
d
t
=
2
E
b
1
[
ω
m
+
ω
s
1
sin
(
ω
m
+
ω
s
)
t
∣
0
T
b
+
ω
m
−
ω
s
1
sin
(
ω
m
−
ω
s
)
t
∣
0
T
b
]
=
2
E
b
1
[
ω
m
+
ω
s
sin
(
ω
m
+
ω
s
)
T
b
+
ω
m
−
ω
s
sin
(
ω
m
−
ω
s
)
T
b
]
-
信号的能量表达式为:
Eb
=
∫
0
T
b
S
s
2
(
t
)
d
t
=
∫
0
T
b
S
m
2
(
t
)
d
t
=
∫
0
T
b
cos
2
(
ω
s
t
)
d
t
=
1
2
∫
0
T
b
cos
(
2
ω
s
t
)
+
1
d
t
=
1
4
ω
s
sin
2
ω
s
T
b
+
T
b
2
=
1
4
ω
s
sin
2
(
ω
c
−
π
2
T
b
)
T
b
+
T
b
2
=
T
b
2
\begin{aligned} E_b &= \int_{0}^{T_b}S_s^2(t)\mathrm{d}t = \int_{0}^{T_b}S_m^2(t)\mathrm{d}t \\ &=\int_{0}^{T_b}\cos^2(\omega_st)\mathrm{d}t\\ &=\frac{1}{2}\int_{0}^{T_b}\cos(2\omega_st)+1\mathrm{d}t\\ &=\frac{1}{4\omega_s}\sin2\omega_sT_b+\frac{T_b}{2}\\ &=\frac{1}{4\omega_s}\sin2(\omega_c-\frac{\pi}{2T_b})T_b+\frac{T_b}{2}\\ &=\frac{T_b}{2} \end{aligned}
E
b
=
∫
0
T
b
S
s
2
(
t
)
d
t
=
∫
0
T
b
S
m
2
(
t
)
d
t
=
∫
0
T
b
cos
2
(
ω
s
t
)
d
t
=
2
1
∫
0
T
b
cos
(
2
ω
s
t
)
+
1
d
t
=
4
ω
s
1
sin
2
ω
s
T
b
+
2
T
b
=
4
ω
s
1
sin
2
(
ω
c
−
2
T
b
π
)
T
b
+
2
T
b
=
2
T
b
因此相关系数的表达式为:
ρ=
sin
(
ω
m
+
ω
s
)
T
b
(
ω
m
+
ω
s
)
T
b
+
sin
(
ω
m
−
ω
s
)
T
b
(
ω
m
−
ω
s
)
T
b
\rho=\frac{\sin(\omega_m+\omega_s)T_b}{(\omega_m+\omega_s)T_b} + \frac{\sin(\omega_m-\omega_s)T_b}{(\omega_m-\omega_s)T_b}
ρ
=
(
ω
m
+
ω
s
)
T
b
sin
(
ω
m
+
ω
s
)
T
b
+
(
ω
m
−
ω
s
)
T
b
sin
(
ω
m
−
ω
s
)
T
b
-
已知,为了便于控制,两个信号是正交,即相关系数为0:
先令,
(ω
m
+
ω
s
)
T
b
=
n
π
(\omega_m+\omega_s)T_b=n\pi
(
ω
m
+
ω
s
)
T
b
=
n
π
,则有
(ω
m
+
ω
s
)
T
b
=
2
ω
c
T
b
=
4
π
f
c
T
b
=
n
π
(\omega_m+\omega_s)T_b = 2\omega_cT_b=4\pi f_cT_b=n\pi
(
ω
m
+
ω
s
)
T
b
=
2
ω
c
T
b
=
4
π
f
c
T
b
=
n
π
,
Tb
=
n
4
T
c
T_b=\frac{n}{4T_c }
T
b
=
4
T
c
n
,因此码元周期是1/4载波周期的整数倍。此时相关系数:
ρ=
sin
(
ω
m
−
ω
s
)
T
b
(
ω
m
−
ω
s
)
T
b
\rho=\frac{\sin(\omega_m-\omega_s)T_b}{(\omega_m-\omega_s)T_b}
ρ
=
(
ω
m
−
ω
s
)
T
b
sin
(
ω
m
−
ω
s
)
T
b
证明h=0.5是最小调制指数有如下两方法:
方法一
,
ρ=
0
\rho=0
ρ
=
0
,可得
(ω
m
−
ω
s
)
T
b
=
n
π
(\omega_m-\omega_s)T_b=n\pi
(
ω
m
−
ω
s
)
T
b
=
n
π
,显然当
n=
1
n=1
n
=
1
时,调制指数:
h=
Δ
f
R
b
=
ω
m
−
ω
s
2
π
R
b
=
0.5
h= \frac{\Delta f}{R_b}=\frac{\omega_m-\omega_s}{2\pi R_b}=0.5
h
=
R
b
Δ
f
=
2
π
R
b
ω
m
−
ω
s
=
0
.
5
为最小值;
方法二
,将
h=
ω
m
−
ω
s
2
π
R
b
h=\frac{\omega_m-\omega_s}{2\pi R_b}
h
=
2
π
R
b
ω
m
−
ω
s
带入可化解为
ρ=
sin
2
π
h
2
π
h
\rho=\frac{\sin2\pi h}{2\pi h}
ρ
=
2
π
h
sin
2
π
h
,如图所示:
因此,相关系数为0时,所对应的h(频差)并非单一值。但只有在h=0.5时取值最小。所以,MSK是一种满足两个信号正交的条件,且频差最小的FSK。
MSK信号波形
因为每个码元周期
T
b
T_b
T
b
是
1
4
\frac{1}{4}
4
1
的载波周期
T
c
T_c
T
c
的整数倍,设
T
b
=
N
T
c
+
m
4
T
c
T_b = NT_c + \frac{m}{4}T_c
T
b
=
N
T
c
+
4
m
T
c
即
T
b
=
(
N
+
m
4
)
1
f
c
T_b =(N+ \frac{m}{4})\frac{1}{f_c}
T
b
=
(
N
+
4
m
)
f
c
1
,所以:
f
m
=
f
c
+
f
d
=
(
N
+
m
4
)
1
T
b
+
1
4
T
b
=
(
N
+
m
+
1
4
)
1
T
b
f
s
=
f
c
−
f
d
=
(
N
+
m
4
)
1
T
b
−
1
4
T
b
=
(
N
+
m
−
1
4
)
1
T
b
f_m= f_c+f_d=(N+ \frac{m}{4})\frac{1}{T_b}+\frac{1}{4T_b}=(N+ \frac{m+1}{4})\frac{1}{T_b}\\ f_s=f_c-f_d=(N+ \frac{m}{4})\frac{1}{T_b}-\frac{1}{4T_b}=(N+ \frac{m-1}{4})\frac{1}{T_b}
f
m
=
f
c
+
f
d
=
(
N
+
4
m
)
T
b
1
+
4
T
b
1
=
(
N
+
4
m
+
1
)
T
b
1
f
s
=
f
c
−
f
d
=
(
N
+
4
m
)
T
b
1
−
4
T
b
1
=
(
N
+
4
m
−
1
)
T
b
1
因此,在一个码元周期
T
b
T_b
T
b
内,包含
f
m
f_m
f
m
或
f
s
f_s
f
s
都是
1
4
\frac{1}{4}
4
1
的整数倍,两者之差
f
m
−
f
s
=
1
2
T
b
f_m-f_s=\frac{1}{2T_b}
f
m
−
f
s
=
2
T
b
1
,固定为半个周期。
例子:如果
T
b
=
1
,
N
=
1
,
m
=
0
T_b=1,N=1,m=0
T
b
=
1
,
N
=
1
,
m
=
0
,则
f
m
=
5
4
,
f
s
=
3
4
,
f
c
=
1
f_m=\frac{5}{4},f_s=\frac{3}{4} ,f_c=1
f
m
=
4
5
,
f
s
=
4
3
,
f
c
=
1
。
如果其码元
a
(
t
)
a(t)
a
(
t
)
为:
则其信号波形
S
M
S
K
(
t
)
S_{MSK} (t)
S
M
S
K
(
t
)
为(黄色部分):