Linux下的段错误产生的原因及调试方法-转

  • Post author:
  • Post category:linux


因为你调用了glibc的fputs

检查你传进去的char*

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

同学们在做Linux练习的时候,编译完程序,执行的时候,有时会莫名的出现 “Segment fault”,即段错误,段错误是让许多C程序员都头疼的提示,因为对于这种模糊的提示,很难判断错误在哪里。那么什么事段错误呢?以及怎么发现程序中的段错误以及如何避免发生段错误呢?

1.什么是段错误?

所谓的段错误就是指访问的内存超出了系统所给这个程序的内存空间,通常这个值是由gdtr来保存的,他是一个48位的寄存器,其中的32位是保存由它指向的gdt表,后13位保存相应于gdt的下标,最后3位包括了程序是否在内存中以及程序的在cpu中的运行级别,指向的gdt是由以64位为一个单位的表,在这张表中就保存着程序运行的代码段以及数据段的起始地址以及与此相应的段限和页面交换还有程序运行级别还有内存粒度等等的信息。一旦一个程序发生了越界访问,cpu就会产生相应的异常保护,于是segmentation fault就出现了。

通过上面的解释,段错误应该就是访问了不可访问的内存,这个内存区要么是不存在的,要么是受到系统保护的。

2.那什么操作会引起段错误呢?

粗略的分一下类:

1)往受到系统保护的内存地址写数据

有些内存是内核占用的或者是其他程序正在使用,为了保证系统正常工作,所以会受到系统的保护,而不能任意访问。

2)内存越界(数组越界,变量类型不一致等)

3)其他

例如:

<1>定义了指针后记得初始化,在使用的时候记得判断是否为NULL

<2>在使用数组的时候是否被初始化,数组下标是否越界,数组元素是否存在等

<3>在变量处理的时候变量的格式控制是否合理等

3.那么我们如何去发现程序中的段错误呢?

通过学习前人的经验和开发的工具,不断的尝试和研究,找出更恰当的方法来避免、发现并处理它。对于一些常见的地方,我们可以避免,对于一些“隐藏”的地方,我们要发现它,发现以后就要及时处理,避免留下隐患。

用gdb来调试,在运行到段错误的地方,会自动停下来并显示出错的行和行号,gdb也是最常用的,如果需要用gdb调试,记得在编译的时候加上-g参数。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


Linux下的段错误的原因及调试

简而言之,产生段错误就是访问了错误的内存段,一般是你没有权限,或者根本就不存在对应的物理内存,尤其常见的是访问0地址.

一般来说, 段错误就是指访问的内存超出了系统所给这个程序的内存空间,通常这个值是由gdtr来保存的,他是一个48位的寄存器,其中的32位是保存由它指向的 gdt表,后13位保存相应于gdt的下标,最后3位包括了程序是否在内存中以及程序的在cpu中的运行级别,指向的gdt是由以64位为一个单位的表,在这张表中就保存着程序运行的代码段以及数据段的起始地址以及与此相应的段限和页面交换还有程序运行级别还有内存粒度等等的信息。一旦一个程序发生了越界访问,cpu就会产生相应的异常保护,于是segmentation fault就出现了.

在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的

1)访问系统数据区,尤其是往  系统保护的内存地址写数据

最常见就是给一个指针以0地址

2)内存越界(数组越界,变量类型不一致等) 访问到不属于你的内存区域

解决方法

我们在用C/C++语言写程序的时侯,内存管理的绝大部分工作都是需要我们来做的。实际上,内存管理是一个比较繁琐的工作,无论你多高明,经验多丰富,难免会在此处犯些小错误,而通常这些错误又是那么的浅显而易于消除。但是手工“除虫”(debug),往往是效率低下且让人厌烦的,本文将就”段错误”这个内存访问越界的错误谈谈如何快速定位这些”段错误”的语句。

下面将就以下的一个存在段错误的程序介绍几种调试方法:

1  dummy_function (void)

2  {

3          unsigned char *ptr = 0x00;

4          *ptr = 0x00;

5  }

6

7  int main (void)

8  {

9          dummy_function ();

10

11          return 0;

12  }作为一个熟练的C/C++程序员,以上代码的bug应该是很清楚的,因为它尝试操作地址为0的内存区域,而这个内存区域通常是不可访问的禁区,当然就会出错了。我们尝试编译运行它:

xiaosuo@gentux test $ ./a.out

段错误果然不出所料,它出错并退出了。

1.利用gdb逐步查找段错误:

这种方法也是被大众所熟知并广泛采用的方法,首先我们需要一个带有调试信息的可执行程序,所以我们加上“-g -rdynamic”的参数进行编译,然后用gdb调试运行这个新编译的程序,具体步骤如下:

xiaosuo@gentux test $ gcc -g -rdynamic d.c

xiaosuo@gentux test $ gdb ./a.out

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for details.

This GDB was configured as “i686-pc-linux-gnu”…Using host libthread_db library “/lib/libthread_db.so.1”.

(gdb) r

Starting program: /home/xiaosuo/test/a.out

Program received signal SIGSEGV, Segmentation fault.

0x08048524 in dummy_function () at d.c:4

4               *ptr = 0x00;

(gdb)                      哦?!好像不用一步步调试我们就找到了出错位置d.c文件的第4行,其实就是如此的简单。

从这里我们还发现进程是由于收到了SIGSEGV信号而结束的。通过进一步的查阅文档(man 7 signal),我们知道SIGSEGV默认handler的动作是打印”段错误”的出错信息,并产生Core文件,由此我们又产生了方法二。

2.分析Core文件:

Core文件是什么呢?

The  default action of certain signals is to cause a process to terminate and produce a core dump file, a disk file containing an image of the process’s memory  at the time of termination.  A list of the signals which cause a process to dump core can be found in signal(7).以 上资料摘自man page(man 5 core)。不过奇怪了,我的系统上并没有找到core文件。后来,忆起为了渐少系统上的拉圾文件的数量(本人有些洁癖,这也是我喜欢Gentoo的原因之一),禁止了core文件的生成,查看了以下果真如此,将系统的core文件的大小限制在512K大小,再试:

xiaosuo@gentux test $ ulimit -c

0

xiaosuo@gentux test $ ulimit -c 1000

xiaosuo@gentux test $ ulimit -c

1000

xiaosuo@gentux test $ ./a.out

段错误 (core dumped)

xiaosuo@gentux test $ ls

a.out  core  d.c  f.c  g.c  pango.c  test_iconv.c  test_regex.ccore文件终于产生了,用gdb调试一下看看吧:

xiaosuo@gentux test $ gdb ./a.out core

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for details.

This GDB was configured as “i686-pc-linux-gnu”…Using host libthread_db library “/lib/libthread_db.so.1”.

warning: Can’t read pathname for load map: 输入/输出错误.

Reading symbols from /lib/libc.so.6…done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2…done.

Loaded symbols for /lib/ld-linux.so.2

Core was generated by `./a.out’.

Program terminated with signal 11, Segmentation fault.

#0  0x08048524 in dummy_function () at d.c:4

4               *ptr = 0x00;哇,好历害,还是一步就定位到了错误所在地,佩服一下Linux/Unix系统的此类设计。

接着考虑下去,以前用windows系统下的ie的时侯,有时打开某些网页,会出现“运行时错误”,这个时侯如果恰好你的机器上又装有windows的编译器的话,他会弹出来一个对话框,问你是否进行调试,如果你选择是,编译器将被打开,并进入调试状态,开始调试。

Linux下如何做到这些呢?我的大脑飞速地旋转着,有了,让它在SIGSEGV的handler中调用gdb,于是第三个方法又诞生了:

3.段错误时启动调试:

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

#include <string.h>

void dump(int signo)

{

char buf[1024];

char cmd[1024];

FILE *fh;

snprintf(buf, sizeof(buf), “/proc/%d/cmdline”, getpid());

if(!(fh = fopen(buf, “r”)))

exit(0);

if(!fgets(buf, sizeof(buf), fh))

exit(0);

fclose(fh);

if(buf[strlen(buf) – 1] == ‘\n’)

buf[strlen(buf) – 1] = ‘\0’;

snprintf(cmd, sizeof(cmd), “gdb %s %d”, buf, getpid());

system(cmd);

exit(0);

}

void

dummy_function (void)

{

unsigned char *ptr = 0x00;

*ptr = 0x00;

}

int

main (void)

{

signal(SIGSEGV, &dump);

dummy_function ();

return 0;

}编译运行效果如下:

xiaosuo@gentux test $ gcc -g -rdynamic f.c

xiaosuo@gentux test $ ./a.out

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for details.

This GDB was configured as “i686-pc-linux-gnu”…Using host libthread_db library “/lib/libthread_db.so.1”.

Attaching to program: /home/xiaosuo/test/a.out, process 9563

Reading symbols from /lib/libc.so.6…done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2…done.

Loaded symbols for /lib/ld-linux.so.2

0xffffe410 in __kernel_vsyscall ()

(gdb) bt

#0  0xffffe410 in __kernel_vsyscall ()

#1  0xb7ee4b53 in waitpid () from /lib/libc.so.6

#2  0xb7e925c9 in strtold_l () from /lib/libc.so.6

#3  0x08048830 in dump (signo=11) at f.c:22

#4  <signal handler called>

#5  0x0804884c in dummy_function () at f.c:31

#6  0x08048886 in main () at f.c:38怎么样?是不是依旧很酷?

以上方法都是在系统上有gdb的前提下进行的,如果没有呢?其实glibc为我们提供了此类能够dump栈内容的函数簇,详见/usr/include/execinfo.h(这些函数都没有提供man page,难怪我们找不到),另外你也可以通过

gnu的手册

进行学习。

4.利用backtrace和objdump进行分析:

重写的代码如下:

#include <execinfo.h>

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

/* A dummy function to make the backtrace more interesting. */

void

dummy_function (void)

{

unsigned char *ptr = 0x00;

*ptr = 0x00;

}

void dump(int signo)

{

void *array[10];

size_t size;

char **strings;

size_t i;

size = backtrace (array, 10);

strings = backtrace_symbols (array, size);

printf (“Obtained %zd stack frames.\n”, size);

for (i = 0; i < size; i++)

printf (“%s\n”, strings[i]);

free (strings);

exit(0);

}

int

main (void)

{

signal(SIGSEGV, &dump);

dummy_function ();

return 0;

}编译运行结果如下:

xiaosuo@gentux test $ gcc -g -rdynamic g.c

xiaosuo@gentux test $ ./a.out

Obtained 5 stack frames.

./a.out(dump+0x19) [0x80486c2]

[0xffffe420]

./a.out(main+0x35) [0x804876f]

/lib/libc.so.6(__libc_start_main+0xe6) [0xb7e02866]

./a.out [0x8048601]这次你可能有些失望,似乎没能给出足够的信息来标示错误,不急,先看看能分析出来什么吧,用objdump反汇编程序,找到地址0x804876f对应的代码位置:

xiaosuo@gentux test $ objdump -d a.out

8048765:       e8 02 fe ff ff          call   804856c <signal@plt>

804876a:       e8 25 ff ff ff          call   8048694 <dummy_function>


804876f

:       b8 00 00 00 00          mov    $0x0,%eax

8048774:       c9                      leave我们还是找到了在哪个函数(dummy_function)中出错的,信息已然不是很完整,不过有总比没有好的啊!

后记:

本文给出了分析”段错误”的几种方法,不要认为这是与孔乙己先生的”回”字四种写法一样的哦,因为每种方法都有其自身的适用范围和适用环境,请酌情使用,或遵医嘱。

部分资料来源于xiaosuo @ cnblog.cn, 特此致谢

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


【转】Linux段错误



1

、段错误的定义


英文:

A segmentation fault (often shortened to segfault) is a particular error condition that can occur during the operation of computer software. In short, a segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (e.g., attempts to write to a read-only location, or to overwrite part of the operating system). Systems based on processors like the Motorola 68000 tend to refer to these events as Address or Bus errors.

Segmentation is one approach to memory management and protection in the operating system. It has been superseded by paging for most purposes, but much of the terminology of segmentation is still used, “segmentation fault” being an example. Some operating systems still have segmentation at some logical level although paging is used as the main memory management policy.

On Unix-like operating systems, a process that accesses invalid memory receives the SIGSEGV signal. On Microsoft Windows, a process that accesses invalid memory receives the STATUS_ACCESS_VIOLATION exception.


中文:

段错误:访问的内存超出了系统给这个程序的内存空间,通常这个值是由gdtr来保存的,gdtr是一个48位的寄存器,其中的32位是保存由它指向的 gdt表,中间13位保存相应于gdt的下标,最后3位包括了程序是否在内存中以及程序的在cpu中的运行级别,指向的gdt是由以64位为一个单位的表,在这张表中就保存着程序运行的代码段以及数据段的起始地址以及与此相应的段限和页面交换还有程序运行级别还有内存粒度等等的信息。一旦一个程序发生了越界访问,cpu就会产生相应的异常保护,于是segmentation fault就出现了。

通过上面的解释,段错误就是访问了不可访问的内存,这个内存区要么是不存在的,要么是受到系统保护的。



2

、段错误是如何产生的?

Segment fault 之所以能够流行于世,是与Glibc库中基本所有的函数都默认型参指针为非空有着密切关系的。


1)代码1:


#include <stdio.h>

int main(){

int i = 0;

scanf (“%d”, i); //应该使用&i,否则产生段错误,因为访问了保护地址0

printf (“%dn”, i);

return 0;

}


2)代码2:


#include <stdio.h>

int main(){

char *p;

p = NULL;

*p = ‘x’; //往内存地址0处写东西,所以会产生段错误

printf(“%c”, *p);

return 0;

}


3)代码3:

#include <stdio.h>

int main(){

char test[1];

printf(“%c”, test[1000000000]); //数组越界,或者这个地址根本不存在

return 0;

}


4)代码4:

#include <stdio.h>

int main(){

int b = 10;

printf(“%sn”, b);

//在打印字符串的时候,实际上是打印某个地址开始的所有字符,但是当你想把整数当字符串打印的时候,这个整数被当成了一个地址,然后printf从这个地址开始去打印字符,直到某个位置上的值为。所以,如果这个整数代表的地址不存在或者不可访问,自然也是访问了不该访问的内存——segmentation fault。

return 0;

}


5)代码5:

#include <stdio.h>

#include <string.h>

char c = ‘c’;

int i = 10;

char buf[100];

printf(“%s”, c);

出现段错误的原因:试图把char型按照字符串格式输出,这里的字符会解释成整数,再解释成地址,所以原因同上面那个例子printf(“%s”, i),试图把int型按照字符串输出。

memset(buf, 0, 100);

sprintf(buf, “%s”, c);

试图把char型按照字符串格式转换。

memset(buf, 0, 100);

sprintf(buf, “%s”, i);

试图把int型按照字符串转换。


6)代码6:

我在进行一个多线程编程的例子里头,定义了一个线程数组

#define THREAD_MAX_NUM

pthread_t thread[THREAD_MAX_NUM];

用pthread_create创建了各个线程,然后用pthread_join来等待线程的结束。

刚开始我就直接等待,在创建线程都成功的时候,pthread_join能够顺利等待各个线程结束,但是一旦创建线程失败,用pthread_join等待那个本不存在的线程时,自然会存在访问不能访问的内存的情况,从而导致段错误。

解决办法为:在创建线程之前,先初始化我们的线程数组,在等待线程的结束的时候,判断线程是否为我们的初始值。如果是的话,说明我们的线程并没有创建成功,所以就不能等,否则就会存在释放那些并不存在或者不可访问的内存空间。



3

、怎样避免段错误?


1)定义了指针后记得初始化,在使用的时候记得判断是否为NULL。

2)在使用数组的时候是否被初始化,数组下标是否越界,数组元素是否存在等。

3)在变量处理的时候变量的格式控制是否合理等。



4

、怎样发现程序的段错误?

常用的调试方法有:

1)在程序内部的关键位置输出(printf)信息,那样可以跟踪段错误在代码中可能的位置。为了方便使用这种调试方法,可以用条件编译指令#ifdef DEBUG和#endif把printf函数给包含起来,编译的时候加上-DDEBUG参数就可以查看调试信息。反之,不加上该参数进行调试就可以。

2)用gdb来调试,在运行到段错误的地方,会自动停下来并显示出错的行和行号。这个应该是很常用的,如果需要用gdb调试,记得在编译的时候加上-g参数,用来显示调试信息。

3)使用catchsegv命令:通过查看帮助信息,可以看到Catch segmentation faults in programs