1.典型非线性特性数学表达式
(1)饱和非线性特性
y
(
t
)
=
{
M
,
x
(
t
)
>
a
K
x
(
t
)
,
∣
x
(
t
)
∣
⩽
a
−
M
,
x
(
t
)
<
−
a
y(t)= \left\{\begin{array}{l} M, \ \ \;\qquad x(t) > a \\ Kx(t), \quad |x(t)| ⩽a \\ -M, \qquad x(t) <-a \end{array}\right.
y
(
t
)
=
⎩
⎨
⎧
M
,
x
(
t
)
>
a
K
x
(
t
)
,
∣
x
(
t
)
∣
⩽
a
−
M
,
x
(
t
)
<
−
a
(2)死区特性
y
(
t
)
=
{
K
x
(
t
)
−
a
,
x
(
t
)
>
a
0
,
∣
x
(
t
)
∣
⩽
a
K
x
(
t
)
+
a
,
x
(
t
)
<
−
a
y(t)= \left\{\begin{array}{l} Kx(t)-a, \quad x(t) > a \\ 0, \qquad \qquad \ \ \ |x(t)| ⩽a \\ Kx(t)+a, \quad x(t) <-a \end{array}\right.
y
(
t
)
=
⎩
⎨
⎧
K
x
(
t
)
−
a
,
x
(
t
)
>
a
0
,
∣
x
(
t
)
∣
⩽
a
K
x
(
t
)
+
a
,
x
(
t
)
<
−
a
(3)变增益特性
y
(
t
)
=
{
K
1
x
(
t
)
,
∣
x
(
t
)
∣
⩽
a
K
2
x
(
t
)
,
∣
x
(
t
)
∣
>
a
y(t)= \left\{\begin{array}{l} K_1x(t), \quad |x(t)| ⩽a \\ K_2x(t), \quad |x(t)| >a \end{array}\right.
y
(
t
)
=
{
K
1
x
(
t
)
,
∣
x
(
t
)
∣
⩽
a
K
2
x
(
t
)
,
∣
x
(
t
)
∣
>
a
2.具有典型非线性环节的二阶系统的相轨迹
系统的结构图
线性部分为二阶系统
G
(
s
)
=
K
s
(
T
s
+
1
)
G(s)=\frac{K}{s(Ts+1)}
G
(
s
)
=
s
(
T
s
+
1
)
K
其中
K
>
0.
T
>
0
K>0.\ T>0
K
>
0
.
T
>
0
。取
e
−
e
˙
e-\dot{e}
e
−
e
˙
平面,列写系统的微分方程
{
e
=
r
−
c
u
K
s
(
T
s
+
1
)
=
c
\left\{\begin{array}{l} e=r-c \\ u{\cfrac{K}{s(Ts+1)}}=c \end{array}\right.
⎩
⎨
⎧
e
=
r
−
c
u
s
(
T
s
+
1
)
K
=
c
化简可得
T
e
¨
+
e
˙
=
T
r
¨
+
r
˙
−
K
u
T\ddot{e}+\dot{e}=T\ddot{r}+\dot{r}-Ku
T
e
¨
+
e
˙
=
T
r
¨
+
r
˙
−
K
u
(1)饱和非线性特性
①当
r
=
0
r=0
r
=
0
或
r
=
1
(
t
)
r=1(t)
r
=
1
(
t
)
时
T
e
¨
+
e
˙
=
{
−
K
M
,
e
>
a
,
I
区
−
K
e
,
∣
e
∣
⩽
a
II
区
K
M
,
e
<
−
a
III
区
T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -KM, \qquad e > a, \quad \text{I}区 \\ -Ke, \ \,\qquad |e| ⩽ a \,\quad \text{II}区 \\ KM, \ \ \;\qquad e < -a \ \ \ \text{III}区 \end{array}\right.
T
e
¨
+
e
˙
=
⎩
⎨
⎧
−
K
M
,
e
>
a
,
I
区
−
K
e
,
∣
e
∣
⩽
a
II
区
K
M
,
e
<
−
a
III
区
开关线
e
=
±
a
e=\pm a
e
=
±
a
,
I
\text{I}
I
和
III
\text{III}
III
区的等倾线方程为
e
˙
=
∓
K
M
T
α
+
1
\dot{e}=\frac{\mp KM}{T\alpha+1}
e
˙
=
T
α
+
1
∓
K
M
由二阶线性系统的相轨迹分析可知,这两个区域无奇点。当
α
=
0
\alpha=0
α
=
0
时,会有两条特殊的等倾斜线
e
˙
=
∓
K
M
\dot{e}=\mp KM
e
˙
=
∓
K
M
II
\text{II}
II
区的微分方程为
T
e
¨
+
e
˙
+
K
e
=
0
T\ddot{e}+\dot{e}+Ke=0
T
e
¨
+
e
˙
+
K
e
=
0
由二阶线性系统的相轨迹分析可知,该区域奇点为原点。微分方程特征根为
s
1
,
2
=
−
2
±
1
−
4
K
T
2
s_{1,2}=\frac{-2\pm\sqrt{1-4KT}}{2}
s
1
,
2
=
2
−
2
±
1
−
4
K
T
奇点为稳定节点或者稳定焦点,等倾线方程
e
˙
=
−
K
T
α
+
1
e
\dot{e}=-\frac{K}{T\alpha+1}e
e
˙
=
−
T
α
+
1
K
e
过零点的一簇直线。
取
T
=
1
T=1
T
=
1
,
K
=
1
K=1
K
=
1
,
a
=
2
a=2
a
=
2
,
M
=
1
M=1
M
=
1
,奇点为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
0.24
K=0.24
K
=
0
.
2
4
,
a
=
0.2
a=0.2
a
=
0
.
2
,
M
=
1
M=1
M
=
1
,奇点为稳定节点,相轨迹图
②当
r
=
v
t
r=vt
r
=
v
t
时
T
e
¨
+
e
˙
−
v
=
{
−
K
M
,
e
>
a
I
区
−
K
e
,
∣
e
∣
⩽
a
II
区
K
M
,
e
<
−
a
III
区
T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -KM, \qquad e > a \ \,\quad \text{I}区 \\ -Ke, \ \,\qquad |e| ⩽ a \,\quad \text{II}区 \\ KM, \ \ \;\qquad e < -a \ \ \ \text{III}区 \end{array}\right.
T
e
¨
+
e
˙
−
v
=
⎩
⎨
⎧
−
K
M
,
e
>
a
I
区
−
K
e
,
∣
e
∣
⩽
a
II
区
K
M
,
e
<
−
a
III
区
开关线
e
=
±
a
e=\pm a
e
=
±
a
,
I
\text{I}
I
和
III
\text{III}
III
区的等倾线方程为
e
˙
=
v
∓
K
M
T
α
+
1
\dot{e}=\frac{v \mp KM}{T\alpha+1}
e
˙
=
T
α
+
1
v
∓
K
M
当
v
−
K
M
=
0
v-KM=0
v
−
K
M
=
0
时,
I
\text{I}
I
区奇点位于
e
e
e
轴上,
III
\text{III}
III
区无奇点。当
v
−
K
M
≠
0
v-KM\not=0
v
−
K
M
=
0
时,
I
\text{I}
I
区和
III
\text{III}
III
区无奇点。当
α
=
0
\alpha=0
α
=
0
时,会有两条特殊的等倾斜线
e
˙
=
v
∓
K
M
\dot{e}=v \mp KM
e
˙
=
v
∓
K
M
II
\text{II}
II
区的微分方程为
T
e
¨
+
e
˙
+
K
e
=
v
T\ddot{e}+\dot{e}+Ke=v
T
e
¨
+
e
˙
+
K
e
=
v
改写微分方程
α
=
d
e
˙
d
e
=
v
−
K
e
−
e
˙
T
e
˙
\alpha=\frac{\mathrm{d}\dot{e}}{\mathrm{d}e}=\frac{v-Ke-\dot{e}}{T\dot{e}}
α
=
d
e
d
e
˙
=
T
e
˙
v
−
K
e
−
e
˙
该区域奇点为
(
v
/
K
,
0
)
(v/K,0)
(
v
/
K
,
0
)
。微分方程特征根为
s
1
,
2
=
−
2
±
1
−
4
K
T
2
s_{1,2}=\frac{-2\pm\sqrt{1-4KT}}{2}
s
1
,
2
=
2
−
2
±
1
−
4
K
T
奇点为稳定节点或者稳定焦点,等倾线方程
e
˙
=
1
T
α
+
1
(
−
K
e
+
v
)
\dot{e}=\frac{1}{T\alpha+1}(-Ke+v)
e
˙
=
T
α
+
1
1
(
−
K
e
+
v
)
过点
(
v
/
K
,
0
)
(v/K,0)
(
v
/
K
,
0
)
的一簇直线。
取
T
=
1
T=1
T
=
1
,
K
=
1
K=1
K
=
1
,
a
=
2
a=2
a
=
2
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点
(
1
,
0
)
(1,0)
(
1
,
0
)
为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
0.4
K=0.4
K
=
0
.
4
,
a
=
2
a=2
a
=
2
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点
(
2.5
,
0
)
(2.5,0)
(
2
.
5
,
0
)
为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
2
K=2
K
=
2
,
a
=
2
a=2
a
=
2
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点
(
0.5
,
0
)
(0.5,0)
(
0
.
5
,
0
)
为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
0.24
K=0.24
K
=
0
.
2
4
,
a
=
6
a=6
a
=
6
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点(4.167,0)为稳定节点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
0.24
K=0.24
K
=
0
.
2
4
,
a
=
0.2
a=0.2
a
=
0
.
2
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点
(
4.167
,
0
)
(4.167,0)
(
4
.
1
6
7
,
0
)
为稳定焦点,相轨迹图
(2)死区特性
①当
r
=
0
r=0
r
=
0
或
r
=
1
(
t
)
r=1(t)
r
=
1
(
t
)
时
T
e
¨
+
e
˙
=
{
−
(
K
e
−
a
)
,
e
>
a
I
区
0
,
e
⩽
a
II
区
−
(
K
e
+
a
)
,
e
<
−
a
III
区
T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -(Ke-a), \quad e > a \ \,\quad \text{I}区 \\ 0, \qquad \qquad \ \ \,\ \; e ⩽a \ \,\quad \text{II}区 \\ -(Ke+a), \quad e <-a \ \ \,\text{III}区 \end{array}\right.
T
e
¨
+
e
˙
=
⎩
⎨
⎧
−
(
K
e
−
a
)
,
e
>
a
I
区
0
,
e
⩽
a
II
区
−
(
K
e
+
a
)
,
e
<
−
a
III
区
开关线
e
=
±
a
e=\pm a
e
=
±
a
,
I
\text{I}
I
和
III
\text{III}
III
区的等倾线方程为
e
˙
=
1
T
α
+
1
(
−
K
e
±
a
)
\dot{e}=\frac{1}{T\alpha+1}(-Ke\pm a)
e
˙
=
T
α
+
1
1
(
−
K
e
±
a
)
奇点为
(
±
a
/
K
,
0
)
(\pm a/K,0)
(
±
a
/
K
,
0
)
,奇点为稳定节点或者稳定焦点。
II
\text{II}
II
区的相轨迹为
α
=
d
e
˙
d
e
=
1
T
\alpha=\frac{\mathrm{d}\dot{e}}{\mathrm{d}e}=\frac{1}{T}
α
=
d
e
d
e
˙
=
T
1
斜率为
1
/
T
1/T
1
/
T
的直线,奇点为
e
˙
=
0
\dot{e}=0
e
˙
=
0
,
e
∈
(
−
a
,
a
)
e\in(-a,a)
e
∈
(
−
a
,
a
)
的连续奇点。
取
T
=
1
T=1
T
=
1
,
K
=
1
K=1
K
=
1
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,奇点
(
±
1
,
0
)
(\pm1,0)
(
±
1
,
0
)
为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
0.24
K=0.24
K
=
0
.
2
4
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,奇点
(
±
4.16
,
0
)
(\pm 4.16,0)
(
±
4
.
1
6
,
0
)
为稳定节点,相轨迹图
②当
r
=
v
t
r=vt
r
=
v
t
时
T
e
¨
+
e
˙
−
v
=
{
−
(
K
e
−
a
)
,
e
>
a
I
区
0
,
e
⩽
a
II
区
−
(
K
e
+
a
)
,
e
<
−
a
III
区
T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -(Ke-a), \quad e > a \ \,\quad \text{I}区 \\ 0, \qquad \qquad \ \ \,\ \; e ⩽a \ \,\quad \text{II}区 \\ -(Ke+a), \quad e <-a \ \ \,\text{III}区 \end{array}\right.
T
e
¨
+
e
˙
−
v
=
⎩
⎨
⎧
−
(
K
e
−
a
)
,
e
>
a
I
区
0
,
e
⩽
a
II
区
−
(
K
e
+
a
)
,
e
<
−
a
III
区
开关线
e
=
±
a
e=\pm a
e
=
±
a
,
I
\text{I}
I
和
III
\text{III}
III
区的等倾线方程为
e
˙
=
1
T
α
+
1
(
−
K
e
±
a
+
v
)
\dot{e}=\frac{1}{T\alpha+1}(-Ke\pm a+v)
e
˙
=
T
α
+
1
1
(
−
K
e
±
a
+
v
)
奇点为
(
(
±
a
+
v
)
/
K
,
0
)
((\pm a+v)/K,0)
(
(
±
a
+
v
)
/
K
,
0
)
,奇点为稳定节点或者稳定焦点。
II
\text{II}
II
区的等倾斜线方程
e
˙
=
v
T
α
+
1
\dot{e}=\frac{v}{T\alpha+1}
e
˙
=
T
α
+
1
v
该区域无奇点。
取
T
=
1
T=1
T
=
1
,
K
=
1
K=1
K
=
1
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点
(
0
,
0
)
(0,0)
(
0
,
0
)
和
(
2
,
0
)
(2,0)
(
2
,
0
)
为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
1
K=1
K
=
1
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
0.5
v=0.5
v
=
0
.
5
,奇点
(
−
0.5
,
0
)
(-0.5,0)
(
−
0
.
5
,
0
)
和
(
1.5
,
0
)
(1.5,0)
(
1
.
5
,
0
)
为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
1
K=1
K
=
1
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
2
v=2
v
=
2
,奇点
(
1
,
0
)
(1,0)
(
1
,
0
)
和
(
3
,
0
)
(3,0)
(
3
,
0
)
为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
1
K=1
K
=
1
,
a
=
4
a=4
a
=
4
,
M
=
1
M=1
M
=
1
,
v
=
2
v=2
v
=
2
,奇点
(
1
,
0
)
(1,0)
(
1
,
0
)
和
(
3
,
0
)
(3,0)
(
3
,
0
)
为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
0.24
K=0.24
K
=
0
.
2
4
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点
(
8.333
,
0
)
(8.333,0)
(
8
.
3
3
3
,
0
)
和
(
0
,
0
)
(0,0)
(
0
,
0
)
为稳定节点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
0.24
K=0.24
K
=
0
.
2
4
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
0.5
v=0.5
v
=
0
.
5
,奇点
(
6.25
,
0
)
(6.25,0)
(
6
.
2
5
,
0
)
和
(
−
2.083
,
0
)
(-2.083,0)
(
−
2
.
0
8
3
,
0
)
为稳定节点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
=
0.24
K=0.24
K
=
0
.
2
4
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
2
v=2
v
=
2
,奇点
(
12.5
,
0
)
(12.5,0)
(
1
2
.
5
,
0
)
和
(
4.167
,
0
)
(4.167,0)
(
4
.
1
6
7
,
0
)
为稳定节点,相轨迹图
(3)变增益特性
①当
r
=
0
r=0
r
=
0
或
r
=
1
(
t
)
r=1(t)
r
=
1
(
t
)
时
T
e
¨
+
e
˙
=
{
−
K
1
e
,
∣
e
∣
⩽
a
I
区
−
K
2
e
,
∣
e
∣
>
a
II
区
T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -K_1e, \quad |e| ⩽a \quad \text{I}区 \\ -K_2e, \quad |e| >a \quad \text{II}区 \end{array}\right.
T
e
¨
+
e
˙
=
{
−
K
1
e
,
∣
e
∣
⩽
a
I
区
−
K
2
e
,
∣
e
∣
>
a
II
区
开关线
e
=
±
a
e=\pm a
e
=
±
a
,
I
\text{I}
I
区的等倾线方程为
e
˙
=
−
K
1
e
T
α
+
1
\dot{e}=\frac{-K_1e}{T\alpha+1}
e
˙
=
T
α
+
1
−
K
1
e
奇点为
(
0
,
0
)
(0,0)
(
0
,
0
)
,奇点为稳定节点或者稳定焦点。
I
\text{I}
I
区的等倾线方程为
e
˙
=
−
K
2
e
T
α
+
1
\dot{e}=\frac{-K_2e}{T\alpha+1}
e
˙
=
T
α
+
1
−
K
2
e
奇点为
(
0
,
0
)
(0,0)
(
0
,
0
)
,奇点为稳定节点或者稳定焦点。
取
T
=
1
T=1
T
=
1
,
K
1
=
0.5
K_1=0.5
K
1
=
0
.
5
,
K
2
=
1
K_2=1
K
2
=
1
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,奇点为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
1
=
1
K_1=1
K
1
=
1
,
K
2
=
0.24
K_2=0.24
K
2
=
0
.
2
4
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,奇点为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
1
=
0.24
K_1=0.24
K
1
=
0
.
2
4
,
K
2
=
1
K_2=1
K
2
=
1
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,奇点为稳定节点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
1
=
0.2
K_1=0.2
K
1
=
0
.
2
,
K
2
=
0.24
K_2=0.24
K
2
=
0
.
2
4
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,奇点为稳定节点,相轨迹图
②当
r
=
v
t
r=vt
r
=
v
t
时
T
e
¨
+
e
˙
−
v
=
{
−
K
1
e
,
∣
e
∣
⩽
a
I
区
−
K
2
e
,
∣
e
∣
>
a
II
区
T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -K_1e, \quad |e| ⩽a \quad \text{I}区 \\ -K_2e, \quad |e| >a \quad \text{II}区 \end{array}\right.
T
e
¨
+
e
˙
−
v
=
{
−
K
1
e
,
∣
e
∣
⩽
a
I
区
−
K
2
e
,
∣
e
∣
>
a
II
区
开关线
e
=
±
a
e=\pm a
e
=
±
a
,
I
\text{I}
I
区的等倾线方程为
e
˙
=
1
T
α
+
1
(
−
K
1
e
+
v
)
\dot{e}=\frac{1}{T\alpha+1}(-K_1e +v)
e
˙
=
T
α
+
1
1
(
−
K
1
e
+
v
)
奇点为
(
v
/
K
1
,
0
)
(v/K_1,0)
(
v
/
K
1
,
0
)
,奇点为稳定节点或者稳定焦点。
I
\text{I}
I
区的等倾线方程为
e
˙
=
1
T
α
+
1
(
−
K
2
e
+
v
)
\dot{e}=\frac{1}{T\alpha+1}(-K_2e +v)
e
˙
=
T
α
+
1
1
(
−
K
2
e
+
v
)
奇点为
(
v
/
K
2
,
0
)
(v/K_2,0)
(
v
/
K
2
,
0
)
,奇点为稳定节点或者稳定焦点。
取
T
=
1
T=1
T
=
1
,
K
1
=
2
K_1=2
K
1
=
2
,
K
2
=
1
K_2=1
K
2
=
1
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点为稳定焦点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
1
=
1
K_1=1
K
1
=
1
,
K
2
=
0.24
K_2=0.24
K
2
=
0
.
2
4
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点为稳定节点,相轨迹图
取
T
=
1
T=1
T
=
1
,
K
1
=
5
K_1=5
K
1
=
5
,
K
2
=
0.24
K_2=0.24
K
2
=
0
.
2
4
,
a
=
1
a=1
a
=
1
,
M
=
1
M=1
M
=
1
,
v
=
1
v=1
v
=
1
,奇点
(
0.2
,
0
)
(0.2,0)
(
0
.
2
,
0
)
为稳定焦点,
(
4.167
,
0
)
(4.167,0)
(
4
.
1
6
7
,
0
)
为稳定节点,相轨迹图