【学习笔记】VGG 网络结构

  • Post author:
  • Post category:其他



跟着大佬学图像分类系列,→

传送门




本博客图像分类系列文章传送门:




前言

图像分类是学习目标检测的“量变”内容,那么,废话不多说,开搞!




一、VGG 是什么?

VGG 网络是14年被牛津大学的著名研究组 VGG(Visual Geometry Group)提出,斩获该年 ImageNet 竞赛中 Localization Task(定位任务)第一名和 Classification Task(分类任务)第二名。



二、网络结构

(VGG网络论文中提供的6种网络配置)


1.网络特点
  • 通过堆叠多个 3*3 的卷积核来代替大尺度卷积核(减少所需的参数)

    论文提出可以通过堆叠两个 3*3 的卷积核来代替 5*5 的卷积核;堆叠三个 3*3 的卷积核来代替 7*7 的卷积核。虽然用了小的卷积核来替换大的卷积核,但并不会影响感受野,即感受野是相同的。


2.感受野(拓展)

在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称为感受野。通俗来说就是输出的 feature map 上的一个单元对应输入层上的区域大小。

如上图所示,自下向上,输入一个 9*9*1 的特征图,经过卷积层 Conv1,得到 4*4*1 大小的第一个输出层,再经过池化层 MaxPool1,得到 2*2*1 大小的输出层,。那么第二个输出层的一个单元(绿色方块)的感受野就是 2*2 大小的区域;第一层输出层的一个单元(蓝色方块)的感受野就是 5*5 大小的区域。

感受野计算公式:



F

(

i

)

F(i)






F


(


i


)





=



(

F

(

i

+

1

)

1

)

S

t

r

i

d

e

+

K

s

i

z

e

( F(i + 1) – 1 )*Stride + Ksize






(


F


(


i




+








1


)













1


)













S


t


r


i


d


e




+








K


s


i


z


e






式中,



F

(

i

)

F(i)






F


(


i


)





为第 i 层感受野,Stride 为第 i 层的步距,Ksize 为卷积核或池化核的尺寸

以上图为例:

Feature Map:



F

(

3

)

=

1

F(3) = 1






F


(


3


)




=








1





(因为上面没有了,所以是1个单元格)

Pool1:



F

(

2

)

F(2)






F


(


2


)





=



(

F

(

3

)

1

)

2

+

2

=

2

(F(3) – 1 )*2+ 2 = 2






(


F


(


3


)













1


)













2




+








2




=








2






Conv1:



F

(

1

)

F(1)






F


(


1


)





=



(

F

(

2

)

1

)

2

+

3

=

5

( F(2) – 1 )*2+ 3 = 5






(


F


(


2


)













1


)













2




+








3




=








5




那么放在 VGG中就是:

Feature Map:



F

=

1

F = 1






F




=








1





(顶层)

Conv3:



F

F






F





=



(

1

1

)

1

+

3

=

3

(1 – 1 )*1+ 3 = 3






(


1













1


)













1




+








3




=








3





(VGG的卷积核默认步长为1,大小为 3*3)

Conv2:



F

(

1

)

F(1)






F


(


1


)





=



(

3

1

)

1

+

3

=

5

(3 – 1 )*1+ 3 = 5






(


3













1


)













1




+








3




=








5





(所以堆叠两层卷积核,感受野与一个 5*5 大小的卷积核是一样的)

Conv1:



F

(

1

)

F(1)






F


(


1


)





=



(

5

1

)

1

+

3

=

7

(5 – 1 )*1+ 3 = 7






(


5













1


)













1




+








3




=








7





(堆叠三层卷积核,感受野与一个 7*7 大小的卷积核是一样的)



3.结构
  • 在前面提到的“VGG网络论文中提供的6种网络配置”中,配置D是常用的结构(VGG16),因此这里也主要分析 VGG16 的结构。(该结构中使用的所有卷积核步长均为1,padding 均为1;池化核大小均为2,步长为2)

    在这里插入图片描述
number Input_size output_size kernels kernels_size
Conv1 [224, 224, 3] [224, 224, 64] 64 3
Conv2 [224, 224, 64] [224, 224, 64] 64 3
MaxPooling1 [224, 224, 64] [112, 112, 64] \ 2
Conv3 [112, 112, 64] [112, 112, 128] 128 3
Conv4 [112, 112, 128] [112, 112, 128] 128 3
MaxPooling2 [112, 112, 128] [56, 56, 128] \ 2
Conv5 [56, 56, 128] [56, 56, 256] 256 3
Conv6 [56, 56, 256] [56, 56, 256] 256 3
Conv7 [56, 56, 256] [56, 56, 256] 256 3
MaxPooling3 [56, 56, 256] [28, 28, 256] \ 2
Conv8 [28, 28, 256] [28, 28, 512] 512 3
Conv9 [28, 28, 512] [28, 28, 512] 512 3
Conv10 [28, 28, 512] [28, 28, 512] 512 3
MaxPooling4 [28, 28, 512] [14, 14, 512] \ 2
Conv11 [14, 14, 512] [14, 14, 512] 512 3
Conv12 [14, 14, 512] [14, 14, 512] 512 3
Conv13 [14, 14, 512] [14, 14, 512] 512 3
MaxPooling5 [28, 28, 512] [7, 7, 512] \ 2
FC1 7*7*512(展平) \ \ 4096
FC2 4096 \ \ 4096
FC3 4096 \ \ 1000



三、使用 Pytorch 搭建 VGG 网络


本代码使用的数据集来自 “花分类” 数据集,→

传送门

←(具体内容看 data_set文件夹下的 README.md)

  • model.py ( 搭建 VGG 网络模型 )
import torch.nn as nn
import torch


class VGG(nn.Module):
    def __init__(self, features, class_num=1000, init_weight=False):
        super(VGG, self).__init__()
        # 卷积层和池化层,来自 make_features 生成的特征提取网络
        self.features = features
        # 三层全连接层
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(512*7*7, 2048),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(True),
            nn.Linear(2048, class_num)
        )
        if init_weight:
            self._initialize_weight()   # 详见 AlexNet 学习笔记

    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)   # 展平,进入全连接层
        x = self.classifier(x)
        return x

    def _initialize_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                nn.init.constant_(m.bias, 0)


""" VGG网络几种不同的卷积网络配置(A,B,D,E) """
configs = {
    # A 数字代表卷积核的数量,'M' 表示池化层
    'vgg11':[64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    # B
    'vgg13':[64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    # D
    'vgg16':[64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    # E
    'vgg19':[64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']
}


# 根据选择的网络配置,生成提取特征网络结构
def make_features(cfg: list):
    layers = []
    in_channels = 3     # 初始输入通道(即 RGB 3通道)
    for v in cfg:
        if v == 'M':    # 数组第i个元素为M,表示需要创建池化层
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]   # 池化核固定大小为2,步长为2
        else:           # 元素不为M,表示需要创建卷积层
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)     # 卷积核固定大小为3,步长为1,padding为1
            layers += [conv2d, nn.ReLU(True)]   # 卷积层后面会进入激活函数,这里当做一个整体放入一层
            in_channels = v         # 通道数(深度)变为卷积核的数量
    return nn.Sequential(*layers)   # *表示非关键字传入参数(Sequential见AlexNet网络学习笔记)


# 默认使用 Vgg16,用户可通过传参改变网络配置
def vgg(model_name="vgg16", **kwargs):      # **kwargs:可变长度字典
    try:
        cfg = configs[model_name]
    except:
        print("Warning: Model number {} not in configs dict!".format(model_name))
        exit(-1)
    model = VGG(make_features(cfg), **kwargs)
    return model
  • train.py ( 训练网络 )
import os
import json

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm

from model import vgg


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    # 数据预处理
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    # 获取数据集
    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    train_num = len(train_dataset)

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    batch_size = 32
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataLoader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)
    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))

    # test_data_iter = iter(validate_loader)
    # test_image, test_label = test_data_iter.next()

    model_name = "vgg16"
    net = vgg(model_name=model_name, num_classes=5, init_weights=True)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.0001)

    epochs = 30
    best_acc = 0.0
    save_path = './{}Net.pth'.format(model_name)
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            outputs = net(images.to(device))
            loss = loss_function(outputs, labels.to(device))
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    main()
  • predict.py ( 使用训练好的模型网络对图像分类 )
import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import vgg


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img_path = "../tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    json_file = open(json_path, "r")
    class_indict = json.load(json_file)

    # create model
    model = vgg(model_name="vgg16", num_classes=5).to(device)
    # load model weights
    weights_path = "./vgg16Net.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    model.load_state_dict(torch.load(weights_path, map_location=device))

    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    print(print_res)
    plt.show()


if __name__ == '__main__':
    main()


代码连接

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_classification/Test3_vggnet



版权声明:本文为Eniac0原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。