tf.variable_scope和tf.name_scope的用法

  • Post author:
  • Post category:其他


tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量

tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量

例如:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  

with tf.variable_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
	print a4.name

输出:

V1/a1:0

V1/a2:0

V2/



版权声明:本文为UESTC_C2_403原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。