时序预测 | MATLAB实现PSO-ELM粒子群优化极限学习机时间序列预测
效果一览
基本介绍
1.MATLAB实现PSO-ELM粒子群优化极限学习机时间序列预测;
2.单变量时间序列预测;
3.运行环境Matlab2018及以上,运行主程序main即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集;
4.SSA-ELM麻雀算法优化极限学习机权值和偏置,命令窗口输出RMSE、MAE、R2、MAPE等评价指标。
程序设计
-
完整程序和数据下载方式1(资源处直接下载):
MATLAB实现PSO-ELM粒子群优化极限学习机时间序列预测
-
完整程序和数据下载方式2(订阅《ELM极限学习机》专栏,同时可阅读《ELM极限学习机》专栏收录的所有内容,数据订阅后私信我获取):
MATLAB实现PSO-ELM粒子群优化极限学习机时间序列预测
-
完整程序和数据下载方式3(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序5份,数据订阅后私信我获取):
MATLAB实现PSO-ELM粒子群优化极限学习机时间序列预测
%% 粒子群算法
function [Best_pos,Best_score,curve]=PSO(pop,Max_iter,lb,ub,dim,fobj,Vmax,Vmin)
%% 参数设置
w = 0.9; % 惯性因子
c1 = 2; % 加速常数
c2 = 2; % 加速常数
Dim = dim; % 维数
sizepop = pop; % 粒子群规模
maxiter = Max_iter; % 最大迭代次数
if(max(size(ub)) == 1)
ub = ub.*ones(1,dim);
lb = lb.*ones(1,dim);
end
fun = fobj; %适应度函数
%% 粒子群初始化
Range = ones(sizepop,1)*(ub-lb);
pop = rand(sizepop,Dim).*Range + ones(sizepop,1)*lb; % 初始化粒子群
V = rand(sizepop,Dim)*(Vmax-Vmin) + Vmin; % 初始化速度
fitness = zeros(sizepop,1);
for i=1:sizepop
fitness(i,:) = fun(pop(i,:)); % 粒子群的适应值
end
%% 个体极值和群体极值
[bestf, bestindex]=min(fitness);
zbest=pop(bestindex,:); % 全局最佳
gbest=pop; % 个体最佳
fitnessgbest=fitness; % 个体最佳适应值
fitnesszbest=bestf; % 全局最佳适应值
%% 迭代寻优
iter = 0;
while( (iter < maxiter ))
for j=1:sizepop
% 速度更新
V(j,:) = w*V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
if V(j,:)>Vmax
V(j,:)=Vmax;
end
if V(j,:)<Vmin
V(j,:)=Vmin;
end
% 位置更新
pop(j,:)=pop(j,:)+V(j,:);
for k=1:Dim
if pop(j,k)>ub(k)
pop(j,k)=ub(k);
end
if pop(j,k)<lb(k)
pop(j,k)=lb(k);
end
end
% 适应值
fitness(j,:) =fun(pop(j,:));
% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
iter = iter+1; % 迭代次数更新
curve(iter) = fitnesszbest;
end
%% 绘图
Best_pos = zbest;
Best_score = fitnesszbest;
end
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
版权声明:本文为kjm13182345320原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。