在了解了最小二乘法的基本原理之后python_numpy实用的最小二乘法理解,就可以用最小二乘法做曲线拟合了
1.直线拟合
直线拟合
已知图中拟合数据的坐标,对图中的拟合数据进行直线拟合。
依旧使用最小二乘法求解
Ax=b——————1
无解下的最优解。已知点的个数为n,所求直线的方程为y1=ax1+b,A由方程右边的a,b的系数构成构成(nx2)的矩阵,每行为(x1,1),b由已知点的y1坐标构成矩阵(nx1)。方程1中的x为要求的列向量[a,b]。
A.TAx’=A.Tb
x’=(A.TA)^(-1)A.TC
求得x‘后,画出拟合曲线的yy=Ax’
import numpy as np
import matplotlib.pyplot as plt
#x的个数决定了样本量
x = np.arange(-1,1,0.02)
#y为理想函数
y = 2*np.sin(x*2.3)+0.5*x**3
#y1为离散的拟合数据
y1 = y+0.5*(np.random.rand(len(x))-0.5)
##################################
#主要程序
one=np.ones((len(x),1))#len(x)得到数据