package cn.allengao.exercise
import org.apache.spark.{SparkConf, SparkContext}
object SparkRDDTest2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SparkRDDTest2").setMaster("local")
val sc = new SparkContext(conf)
//指定为2个分区
val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7), 2)
//设定一个函数,设定分区的ID索引,数值
val func1 = (index: Int, iter: Iterator[(Int)]) => {
iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator
}
//查看每个分区的信息
val res1 = rdd1.mapPartitionsWithIndex(func1)
//用aggregate,指定初始值,对rdd1进行聚合操作,先进行局部求和,再进行全局求和
val res2 = rdd1.aggregate(0)(_ + _, _ + _)
//将局部分区中最大的数找出来再进行求和
val res3 = rdd1.aggregate(0)(math.max(_, _), _ + _)
//每个分区都以10为初始值,10用了3次
val res4 = rdd1.aggregate(10)(_ + _, _ + _)
/*
运行结果:ArrayBuffer([partID:0, val: 1], [partID:0, val: 2],
[partID:0, val: 3], [partID:1, val: 4], [partID:1, val: 5],
[partID:1, val: 6], [partID:1, val: 7])
*/
// println(res1.collect().toBuffer)
//运行结果:28
// println(res2)
//运行结果:10
// println(res3)
//运行结果:58
// println(res4)
val rdd2 = sc.parallelize(List("a", "b", "c", "d", "e", "f"), 2)
val res5 = rdd2.aggregate("|")(_ + _, _ + _)
//运行结果:||abc|def
// println(res5)
val rdd3 = sc.parallelize(List("12", "23", "345", "4567"), 2)
//两个分区先计算出字符串的最大长度,然后合成字符串
val res6 = rdd3.aggregate("")((x, y) => math.max(x.length, y.length).toString, (x, y) => x + y)
//运行结果:24 或者 42,体现了并行化的特点
// println(res6)
val rdd4 = sc.parallelize(List("12", "23", "345", ""), 2)
val res7 = rdd4.aggregate("")((x, y) => math.min(x.length, y.length).toString, (x, y) => x + y)
//运行结果:01 或者 10,值"0".toString的长度为0,"0".toString.length的长度为1
/*
math.min("".length, "12".length ) 的结果是:0 , math.min("0".length, "23".length ) 的结果是:1
math.min("".length, "345".length) 的结果是:0 , math.min("0".length, "".length) 的结果是:0
*/
// println(res7)
val rdd5 = sc.parallelize(List("12", "23", "", "345"), 2)
val res8 = rdd5.aggregate("")((x, y) => math.min(x.length, y.length).toString, (x, y) => x + y)
//运行结果:11
/*
math.min("".length, "12".length ) 的结果是:0 , math.min("0".length, "23".length ) 的结果是:1
math.min("".length, "".length) 的结果是:0 , math.min("0".length, "345".length) 的结果是:1
*/
// println(res8)
//aggregateByKey可以先进行局部操作,再进行全局操作。
val pairRDD = sc.parallelize(List(("cat", 2), ("cat", 5), ("mouse", 4), ("cat", 12), ("dog", 12), ("mouse", 2)), 2)
def func2(index: Int, iter: Iterator[(String, Int)]): Iterator[String] = {
iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator
}
// println(pairRDD.mapPartitionsWithIndex(func2).collect.toBuffer)
//把每种类型的最大的次数取出来
//运行结果:ArrayBuffer((dog,12), (cat,17), (mouse,6))
println(pairRDD.aggregateByKey(0)(math.max(_, _), _ + _).collect.toBuffer)
//运行结果:ArrayBuffer((dog,12), (cat,22), (mouse,20))
println(pairRDD.aggregateByKey(10)(math.max(_, _), _ + _).collect.toBuffer)
/*
pairRDD.aggregateByKey(0)(_ + _ , _ + _).collect与pairRDD.reduceByKey( _ + _).collect,
这两个方法执行结果是一样的,实际上底层都是调用的同一个方法:combineByKey
*/
}
}
版权声明:本文为sonicgyq_gyq原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。