思路:从起始点开始,每隔(2^n)*(2^n)(n为任意正整数)矩阵之间,不同矩阵中数的和之差为n*n*n,而连续个x个(2^n)*m矩阵之和为(1+x*2^n)*x*2^n/2,因此我们可以快速统计连续2^n区间和,对k进行切割即可。
#include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
#define LL long long
LL qpow(LL x,LL y){
LL e=1;
while(y){
if(y%2)e=(e*x)%MOD;
x=x*x%MOD;
y/=2;
}
return e;
}
LL low(LL x){
for(LL i=1;i<=x;i<<=1){
if(i<<1>x)
return i;
}
}
LL getS(LL x,LL y,LL n){
return (y-x+1)*(x+y)%MOD*qpow(2,MOD-2)%MOD*n%MOD;
}
LL dfs(LL a,LL b,LL k,LL t){
if(a<=0||b<=0||k<=0) return 0;
LL l=min(a,b);
LL r=max(a,b);
LL x=low(l);
LL limit=min(r/x,k/x);
LL ans=0;
if(l==r&&l==x){
ans=(ans+getS(t+1,t+min(x,k),x))%MOD;
}
else{
if(limit%2==0){
LL rema=min(r-limit*x,x);
ans=(ans+dfs(x,rema,k-limit*x,t+limit*x))%MOD;
ans=(ans+dfs(l-x,rema,k-limit*x-x,t+limit*x+x))%MOD;
rema=min(r-limit*x-x,x);
ans=(ans+dfs(x,rema,k-limit*x-x,t+limit*x+x))%MOD;
ans=(ans+dfs(l-x,rema,k-limit*x,t+limit*x))%MOD;
}
else{
limit--;
ans=(ans+dfs(x,x,k-limit*x,t+limit*x))%MOD;
ans=(ans+dfs(l-x,x,k-limit*x-x,t+limit*x+x))%MOD;
LL rema=min(r-limit*x-x,x);
ans=(ans+dfs(x,rema,k-limit*x-x,t+limit*x+x))%MOD;
ans=(ans+dfs(l-x,rema,k-limit*x,t+limit*x))%MOD;
}
ans=(ans+getS(t+1,t+limit*x,l))%MOD;
}
return ans;
}
int main() {
int N,x1,x2,y1,y2,k;
scanf("%d", &N);
for(int i=1;i<=N;i++){
scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&k);
LL ans=((dfs(x2,y2,k,0)-dfs(x1-1,y2,k,0)-dfs(x2,y1-1,k,0)+dfs(x1-1,y1-1,k,0))%MOD+MOD)%MOD;
printf("%lld\n",ans);
}
return 0;
}
版权声明:本文为u011528035原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。