【ELM数据预测】粒子群算法优化ELM数据预测(含前后对比)【含Matlab源码 449期】

  • Post author:
  • Post category:其他




⛄一、粒子群算法优化极限学习机ELM简介

PSO-ELM优化算法预测模型

ELM模型在训练之前可以随机产生ω和b, 只需要确定隐含层神经元个数及隐含层神经元激活函数, 即可实现ELM预测模型的构建。在ELM模型的构建中, 只需确定初始ω和b, 而无需复杂的参数设置, 具有学习速度快、泛化性能好等优点。然而在发动机参数预测过程中, 不同的参数设置, 对预测模型的准确度起着一定程度的影响。此时, 如果通过简单的随机选取初始化参数方法来构建极限学习机模型, 在一定程度上存在着模型构建中隐含层节点冗余等缺点, 这在一定程度上阻碍了ELM模型的精确性。因此, 在构建EGTM数据预测模型的过程中, 可通过PSO算法寻优确定模型的最佳参数, 以保证ELM模型的准确性。

PSO优化算法于1995年由美国学者Eberhart和Kennedy提出。在优化过程中, 通过跟踪个体最优粒子pmbest与群体最优粒子gmbest, 从而更新粒子的速度与位置:

在这里插入图片描述

式中:d表示粒子搜索的空间维数, i为搜索过程中种群规模大小, m为当前种群代数。r∈(0,1), 表示随机数, c∈(0,2), 表示学习因子, 取值由经验设定。ω为惯性权重系数, 用x与v分别表示粒子的当前位置与当前速度, pmbest表示当前个体最优粒子位置, gmbest表示当前群体最优粒子位置。

利用PSO算法的收敛性强、鲁棒性好等优点, 可以在较短的运行时间内, 在保证精确度的情况下有效地寻找全局最优解。PSO-ELM算法的流程如图1所示。



版权声明:本文为weixin_63266434原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。