fastText 源码分析

  • Post author:
  • Post category:其他


https://heleifz.github.io/14732610572844.html

介绍


fastText

是 facebook 近期开源的一个词向量计算以及文本分类工具,该工具的理论基础是以下两篇论文:


Enriching Word Vectors with Subword Information

这篇论文提出了用 word n-gram 的向量之和来代替简单的词向量的方法,以解决简单 word2vec 无法处理同一词的不同形态的问题。fastText 中提供了 maxn 这个参数来确定 word n-gram 的 n 的大小。


Bag of Tricks for Efficient Text Classification

这篇论文提出了 fastText 算法,该算法实际上是将目前用来算 word2vec 的网络架构做了个小修改,原先使用一个词的上下文的所有词向量之和来预测词本身(CBOW 模型),现在改为用一段短文本的词向量之和来对文本进行分类。

在我看来,fastText 的价值是提供了一个

更具可读性,模块化程度较好

的 word2vec 的实现,附带一些新的分类功能,本文详细分析它的源码。

顶层结构

fastText 的代码结构以及各模块的功能如下图所示:

fasttext-arch

分析各模块时,我只会解释该模块的

主要调用路径

下的源码,以

注释

的方式说明,其它的功能性代码请大家自行阅读。如果对 word2vec 的理论和相关术语不了解,请先阅读这篇

word2vec 中的数学原理详解

训练数据格式

训练数据格式为一行一个句子,每个词用空格分割,如果一个词带有前缀“

__label__

”,那么它就作为一个类标签,在文本分类时使用,这个前缀可以通过

-label

参数自定义。训练文件支持 UTF-8 格式。

fasttext 模块

fasttext 是最顶层的模块,它的主要功能是

训练



预测

,首先是

训练

功能的调用路径,第一个函数是

train

,它的主要作用是

初始化参数,启动多线程训练

,请大家留意源码中的相关部分。

void FastText::train(std::shared_ptr<Args> args) {
  args_ = args;
  dict_ = std::make_shared<Dictionary>(args_);
  std::ifstream ifs(args_->input);
  if (!ifs.is_open()) {
    std::cerr << "Input file cannot be opened!" << std::endl;
    exit(EXIT_FAILURE);
  }
  // 根据输入文件初始化词典
  dict_->readFromFile(ifs);
  ifs.close();

   // 初始化输入层, 对于普通 word2vec,输入层就是一个词向量的查找表,
   // 所以它的大小为 nwords 行,dim 列(dim 为词向量的长度),但是 fastText 用了
   // word n-gram 作为输入,所以输入矩阵的大小为 (nwords + ngram 种类) * dim
   // 代码中,所有 word n-gram 都被 hash 到固定数目的 bucket 中,所以输入矩阵的大小为
   // (nwords + bucket 个数) * dim
  input_ = std::make_shared<Matrix>(dict_->nwords()+args_->bucket, args_->dim);
  
  // 初始化输出层,输出层无论是用负采样,层次 softmax,还是普通 softmax,
  // 对于每种可能的输出,都有一个 dim 维的参数向量与之对应
  // 当 args_->model == model_name::sup 时,训练分类器,
  // 所以输出的种类是标签总数 dict_->nlabels()
  if (args_->model == model_name::sup) {
    output_ = std::make_shared<Matrix>(dict_->nlabels(), args_->dim);
  } else {
  // 否则训练的是词向量,输出种类就是词的种类 dict_->nwords()
    output_ = std::make_shared<Matrix>(dict_->nwords(), args_->dim);
  }
  input_->uniform(1.0 / args_->dim);
  output_->zero();

  start = clock();
  tokenCount = 0;
  
  // 库采用 C++ 标准库的 thread 来实现多线程
  std::vector<std::thread> threads;
  for (int32_t i = 0; i < args_->thread; i++) {
    // 实际的训练发生在 trainThread 中
    threads.push_back(std::thread([=]() { trainThread(i); }));
  }
  for (auto it = threads.begin(); it != threads.end(); ++it) {
    it->join();
  }
  
  // Model 的所有参数(input_, output_)是在初始化时由外界提供的,
  // 此时 input_ 和 output_ 已经处于训练结束的状态
  model_ = std::make_shared<Model>(input_, output_, args_, 0);

  saveModel();
  if (args_->model != model_name::sup) {
    saveVectors();
  }
}

下面,我们进入

trainThread

函数,看看训练的主体逻辑,该函数的主要工作是

实现了标准的随机梯度下降

,并随着训练的进行逐步降低学习率。

void FastText::trainThread(int32_t threadId) {

  std::ifstream ifs(args_->input);
  // 根据线程数,将训练文件按照总字节数(utils::size)均分成多个部分
  // 这么做的一个后果是,每一部分的第一个词有可能从中间被切断,
  // 这样的"小噪音"对于整体的训练结果无影响
  utils::seek(ifs, threadId * utils::size(ifs) / args_->thread);

  Model model(input_, output_, args_, threadId);
  if (args_->model == model_name::sup) {
    model.setTargetCounts(dict_->getCounts(entry_type::label));
  } else {
    model.setTargetCounts(dict_->getCounts(entry_type::word));
  }

  // 训练文件中的 token 总数
  const int64_t ntokens = dict_->ntokens();
  // 当前线程处理完毕的 token 总数
  int64_t localTokenCount = 0;
  std::vector<int32_t> line, labels;
  // tokenCount 为所有线程处理完毕的 token 总数
  // 当处理了 args_->epoch 遍所有 token 后,训练结束 
  while (tokenCount < args_->epoch * ntokens) {
    // progress = 0 ~ 1,代表当前训练进程,随着训练的进行逐渐增大
    real progress = real(tokenCount) / (args_->epoch * ntokens);
    // 学习率根据 progress 线性下降
    real lr = args_->lr * (1.0 - progress);
    localTokenCount += dict_->getLine(ifs, line, labels, model.rng);
    // 根据训练需求的不同,这里用的更新策略也不同,它们分别是:
    // 1. 有监督学习(分类)
    if (args_->model == model_name::sup) {
      dict_->addNgrams(line, args_->wordNgrams);
      supervised(model, lr, line, labels);
    // 2. word2vec (CBOW)
    } else if (args_->model == model_name::cbow) {
      cbow(model, lr, line);
    // 3. word2vec (SKIPGRAM)
    } else if (args_->model == model_name::sg) {
      skipgram(model, lr, line);
    }
    // args_->lrUpdateRate 是每个线程学习率的变化率,默认为 100,
    // 它的作用是,每处理一定的行数,再更新全局的 tokenCount 变量,从而影响学习率
    if (localTokenCount > args_->lrUpdateRate) {
      tokenCount += localTokenCount;
      // 每次更新 tokenCount 后,重置计数
      localTokenCount = 0;
      // 0 号线程负责将训练进度输出到屏幕
      if (threadId == 0) {
        printInfo(progress, model.getLoss());
      }
    }
  }
  if (threadId == 0) {
    printInfo(1.0, model.getLoss());
    std::cout << std::endl;
  }
  ifs.close();
}


一哄而上的并行训练

:每个训练线程在更新参数时并没有加锁,这会给参数更新带来一些噪音,但是不会影响最终的结果。无论是 google 的 word2vec 实现,还是 fastText 库,都没有加锁。



trainThread

函数中我们发现,实际的模型更新策略发生在

supervised

,

cbow

,

skipgram

三个函数中,这三个函数都调用同一个

model.update

函数来更新参数,这个函数属于 model 模块,但在这里我先简单介绍它,以方便大家理解代码。

update 函数的原型为

void Model::update(const std::vector<int32_t>& input, int32_t target, real lr)

该函数有三个参数,分别是“输入”,“类标签”,“学习率”。

  • 输入是一个

    int32_t

    数组,每个元素代表一个词在 dictionary 里的 ID。对于分类问题,这个数组代表输入的短文本,对于 word2vec,这个数组代表一个词的上下文。
  • 类标签是一个

    int32_t

    变量。对于 word2vec 来说,它就是带预测的词的 ID,对于分类问题,它就是类的 label 在 dictionary 里的 ID。因为 label 和词在词表里一起存放,所以有统一的 ID 体系。

下面,我们回到 fasttext 模块的三个更新函数:

void FastText::supervised(Model& model, real lr,
                          const std::vector<int32_t>& line,
                          const std::vector<int32_t>& labels) {
  if (labels.size() == 0 || line.size() == 0) return;
  // 因为一个句子可以打上多个 label,但是 fastText 的架构实际上只有支持一个 label
  // 所以这里随机选择一个 label 来更新模型,这样做会让其它 label 被忽略
  // 所以 fastText 不太适合做多标签的分类
  std::uniform_int_distribution<> uniform(0, labels.size() - 1);
  int32_t i = uniform(model.rng);
  model.update(line, labels[i], lr);
}

void FastText::cbow(Model& model, real lr,
                    const std::vector<int32_t>& line) {
  std::vector<int32_t> bow;
  std::uniform_int_distribution<> uniform(1, args_->ws);
  
  // 在一个句子中,每个词可以进行一次 update
  for (int32_t w = 0; w < line.size(); w++) {
    // 一个词的上下文长度是随机产生的
    int32_t boundary = uniform(model.rng);
    bow.clear();
    // 以当前词为中心,将左右 boundary 个词加入 input
    for (int32_t c = -boundary; c <= boundary; c++) {
      // 当然,不能数组越界
      if (c != 0 && w + c >= 0 && w + c < line.size()) {
        // 实际被加入 input 的不止是词本身,还有词的 word n-gram
        const std::vector<int32_t>& ngrams = dict_->getNgrams(line[w + c]);
        bow.insert(bow.end(), ngrams.cbegin(), ngrams.cend());
      }
    }
    // 完成一次 CBOW 更新
    model.update(bow, line[w], lr);
  }
}

void FastText::skipgram(Model& model, real lr,
                        const std::vector<int32_t>& line) {
  std::uniform_int_distribution<> uniform(1, args_->ws);
  for (int32_t w = 0; w < line.size(); w++) {
    // 一个词的上下文长度是随机产生的
    int32_t boundary = uniform(model.rng);
    // 采用词+word n-gram 来预测这个词的上下文的所有的词
    const std::vector<int32_t>& ngrams = dict_->getNgrams(line[w]);
    // 在 skipgram 中,对上下文的每一个词分别更新一次模型
    for (int32_t c = -boundary; c <= boundary; c++) {
      if (c != 0 && w + c >= 0 && w + c < line.size()) {
        model.update(ngrams, line[w + c], lr);
      }
    }
  }
}

训练部分的代码已经分析完毕,预测部分的代码就简单多了,它的主要逻辑都在

model.predict

函数里。

void FastText::predict(const std::string& filename, int32_t k, bool print_prob) {
  std::vector<int32_t> line, labels;
  std::ifstream ifs(filename);
  if (!ifs.is_open()) {
    std::cerr << "Test file cannot be opened!" << std::endl;
    exit(EXIT_FAILURE);
  }
  while (ifs.peek() != EOF) {
    // 读取输入文件的每一行
    dict_->getLine(ifs, line, labels, model_->rng);
    // 将一个词的 n-gram 加入词表,用于处理未登录词。(即便一个词不在词表里,我们也可以用它的 word n-gram 来预测一个结果)
    dict_->addNgrams(line, args_->wordNgrams);
    if (line.empty()) {
      std::cout << "n/a" << std::endl;
      continue;
    }
    std::vector<std::pair<real, int32_t>> predictions;
    // 调用 model 模块的预测接口,获取 k 个最可能的分类
    model_->predict(line, k, predictions);
    // 输出结果
    for (auto it = predictions.cbegin(); it != predictions.cend(); it++) {
      if (it != predictions.cbegin()) {
        std::cout << ' ';
      }
      std::cout << dict_->getLabel(it->second);
      if (print_prob) {
        std::cout << ' ' << exp(it->first);
      }
    }
    std::cout << std::endl;
  }
  ifs.close();
}

通过对 fasttext 模块的分析,我们发现它最核心的预测和更新逻辑都在 model 模块中,接下来,我们进入 model 模块一探究竟。

model 模块

model 模块对外提供的服务可以分为

update



predict

两类,下面我们分别对它们进行分析。由于这里的参数较多,我们先以图示标明各个参数在模型中所处的位置,以免各位混淆。

fasttext-model-arch

图中所有变量的名字全部与 model 模块中的名字保持一致,注意到

wo_

矩阵在不同的输出层结构中扮演着不同的角色。

update


update

函数的作用已经在前面介绍过,下面我们看一下它的实现:

void Model::update(const std::vector<int32_t>& input, int32_t target, real lr) {
  // target 必须在合法范围内
  assert(target >= 0);
  assert(target < osz_);
  if (input.size() == 0) return;
  // 计算前向传播:输入层 -> 隐层
  hidden_.zero();
  for (auto it = input.cbegin(); it != input.cend(); ++it) {
    // hidden_ 向量保存输入词向量的均值,
    // addRow 的作用是将 wi_ 矩阵的第 *it 列加到 hidden_ 上
    hidden_.addRow(*wi_, *it);
  }
  // 求和后除以输入词个数,得到均值向量
  hidden_.mul(1.0 / input.size());
  
  // 根据输出层的不同结构,调用不同的函数,在各个函数中,
  // 不仅通过前向传播算出了 loss_,还进行了反向传播,计算出了 grad_,后面逐一分析。
  // 1. 负采样
  if (args_->loss == loss_name::ns) {
    loss_ += negativeSampling(target, lr);
  } else if (args_->loss == loss_name::hs) {
  // 2. 层次 softmax
    loss_ += hierarchicalSoftmax(target, lr);
  } else {
  // 3. 普通 softmax
    loss_ += softmax(target, lr);
  }
  nexamples_ += 1;

  // 如果是在训练分类器,就将 grad_ 除以 input_ 的大小
  // 原因不明
  if (args_->model == model_name::sup) {
    grad_.mul(1.0 / input.size());
  }
  // 反向传播,将 hidden_ 上的梯度传播到 wi_ 上的对应行
  for (auto it = input.cbegin(); it != input.cend(); ++it) {
    wi_->addRow(grad_, *it, 1.0);
  }
}

下面我们看看三种输出层对应的更新函数:

negativeSampling

,

hierarchicalSoftmax

,

softmax

model 模块中最有意思的部分就是将层次 softmax 和负采样统一抽象成多个二元 logistic regression 计算。

如果使用负采样,训练时每次选择一个正样本,随机采样几个负样本,每种输出都对应一个参数向量,保存于

wo_

的各行。对所有样本的参数更新,都是一次独立的 LR 参数更新。

如果使用层次 softmax,对于每个目标词,都可以在构建好的霍夫曼树上确定一条从根节点到叶节点的路径,路径上的每个非叶节点都是一个 LR,参数保存在

wo_

的各行上,训练时,这条路径上的 LR 各自独立进行参数更新。

无论是负采样还是层次 softmax,在神经网络的计算图中,所有 LR 都会依赖于

hidden_

的值,所以

hidden_

的梯度

grad_

是各个 LR 的反向传播的梯度的累加。

LR 的代码如下:

real Model::binaryLogistic(int32_t target, bool label, real lr) {
  // 将 hidden_ 和参数矩阵的第 target 行做内积,并计算 sigmoid
  real score = utils::sigmoid(wo_->dotRow(hidden_, target));
  // 计算梯度时的中间变量
  real alpha = lr * (real(label) - score);
  // Loss 对于 hidden_ 的梯度累加到 grad_ 上
  grad_.addRow(*wo_, target, alpha);
  // Loss 对于 LR 参数的梯度累加到 wo_ 的对应行上
  wo_->addRow(hidden_, target, alpha);
  // LR 的 Loss
  if (label) {
    return -utils::log(score);
  } else {
    return -utils::log(1.0 - score);
  }
}

经过以上的分析,下面三种逻辑就比较容易理解了:

real Model::negativeSampling(int32_t target, real lr) {
  real loss = 0.0;
  grad_.zero();
  for (int32_t n = 0; n <= args_->neg; n++) {
    // 对于正样本和负样本,分别更新 LR
    if (n == 0) {
      loss += binaryLogistic(target, true, lr);
    } else {
      loss += binaryLogistic(getNegative(target), false, lr);
    }
  }
  return loss;
}

real Model::hierarchicalSoftmax(int32_t target, real lr) {
  real loss = 0.0;
  grad_.zero();
  // 先确定霍夫曼树上的路径
  const std::vector<bool>& binaryCode = codes[target];
  const std::vector<int32_t>& pathToRoot = paths[target];
  // 分别对路径上的中间节点做 LR
  for (int32_t i = 0; i < pathToRoot.size(); i++) {
    loss += binaryLogistic(pathToRoot[i], binaryCode[i], lr);
  }
  return loss;
}

// 普通 softmax 的参数更新
real Model::softmax(int32_t target, real lr) {
  grad_.zero();
  computeOutputSoftmax();
  for (int32_t i = 0; i < osz_; i++) {
    real label = (i == target) ? 1.0 : 0.0;
    real alpha = lr * (label - output_[i]);
    grad_.addRow(*wo_, i, alpha);
    wo_->addRow(hidden_, i, alpha);
  }
  return -utils::log(output_[target]);
}

predict

predict 函数可以用于给输入数据打上 1 ~ K 个类标签,并输出各个类标签对应的概率值,对于层次 softmax,我们需要遍历霍夫曼树,找到 top-K 的结果,对于普通 softmax(包括负采样和 softmax 的输出),我们需要遍历结果数组,找到 top-K。

void Model::predict(const std::vector<int32_t>& input, int32_t k, std::vector<std::pair<real, int32_t>>& heap) {
  assert(k > 0);
  heap.reserve(k + 1);
  // 计算 hidden_
  computeHidden(input);
  
  // 如果是层次 softmax,使用 dfs 遍历霍夫曼树的所有叶子节点,找到 top-k 的概率
  if (args_->loss == loss_name::hs) {
    dfs(k, 2 * osz_ - 2, 0.0, heap);
  } else {
  // 如果是普通 softmax,在结果数组里找到 top-k
    findKBest(k, heap);
  }
  // 对结果进行排序后输出
  // 因为 heap 中虽然一定是 top-k,但并没有排好序
  std::sort_heap(heap.begin(), heap.end(), comparePairs);
}

void Model::findKBest(int32_t k, std::vector<std::pair<real, int32_t>>& heap) {
  // 计算结果数组
  computeOutputSoftmax();
  for (int32_t i = 0; i < osz_; i++) {
    if (heap.size() == k && utils::log(output_[i]) < heap.front().first) {
      continue;
    }
    // 使用一个堆来保存 top-k 的结果,这是算 top-k 的标准做法
    heap.push_back(std::make_pair(utils::log(output_[i]), i));
    std::push_heap(heap.begin(), heap.end(), comparePairs);
    if (heap.size() > k) {
      std::pop_heap(heap.begin(), heap.end(), comparePairs);
      heap.pop_back();
    }
  }
}

void Model::dfs(int32_t k, int32_t node, real score, std::vector<std::pair<real, int32_t>>& heap) {
  if (heap.size() == k && score < heap.front().first) {
    return;
  }

  if (tree[node].left == -1 && tree[node].right == -1) {
    // 只输出叶子节点的结果
    heap.push_back(std::make_pair(score, node));
    std::push_heap(heap.begin(), heap.end(), comparePairs);
    if (heap.size() > k) {
      std::pop_heap(heap.begin(), heap.end(), comparePairs);
      heap.pop_back();
    }
    return;
  }
  
  // 将 score 累加后递归向下收集结果
  real f = utils::sigmoid(wo_->dotRow(hidden_, node - osz_));
  dfs(k, tree[node].left, score + utils::log(1.0 - f), heap);
  dfs(k, tree[node].right, score + utils::log(f), heap);
}

其它模块

除了以上两个模块,dictionary 模块也相当重要,它完成了训练文件载入,哈希表构建,word n-gram 计算等功能,但是并没有太多算法在里面。

其它模块例如 Matrix, Vector 也只是封装了简单的矩阵向量操作,这里不再做详细分析。

附录:构建霍夫曼树算法分析

在学信息论的时候接触过构建 Huffman 树的算法,课本中的方法描述往往是:

找到当前权重最小的两个子树,将它们合并

算法的性能取决于如何实现这个逻辑。网上的很多实现都是在新增节点都时遍历一次当前所有的树,这种算法的复杂度是









































O(n2)


,性能很差。

聪明一点的方法是用一个优先级队列来保存当前所有的树,每次取 top 2,合并,加回队列。这个算法的复杂度是








































O(nlogn)


,缺点是必需使用额外的数据结构,而且进堆出堆的操作导致常数项较大。

word2vec 以及 fastText 都采用了一种更好的方法,时间复杂度是








































O(nlogn)


,只用了一次排序,一次遍历,简洁优美,但是要理解它需要进行一些推理。

算法如下:

void Model::buildTree(const std::vector<int64_t>& counts) {
  // counts 数组保存每个叶子节点的词频,降序排列
  // 分配所有节点的空间
  tree.resize(2 * osz_ - 1);
  // 初始化节点属性
  for (int32_t i = 0; i < 2 * osz_ - 1; i++) {
    tree[i].parent = -1;
    tree[i].left = -1;
    tree[i].right = -1;
    tree[i].count = 1e15;
    tree[i].binary = false;
  }
  for (int32_t i = 0; i < osz_; i++) {
    tree[i].count = counts[i];
  }
  // leaf 指向当前未处理的叶子节点的最后一个,也就是权值最小的叶子节点
  int32_t leaf = osz_ - 1;
  // node 指向当前未处理的非叶子节点的第一个,也是权值最小的非叶子节点
  int32_t node = osz_;
  // 逐个构造所有非叶子节点(i >= osz_, i < 2 * osz - 1)
  for (int32_t i = osz_; i < 2 * osz_ - 1; i++) {
    // 最小的两个节点的下标
    int32_t mini[2];
    
    // 计算权值最小的两个节点,候选只可能是 leaf, leaf - 1,
    // 以及 node, node + 1
    for (int32_t j = 0; j < 2; j++) {
      // 从这四个候选里找到 top-2
      if (leaf >= 0 && tree[leaf].count < tree[node].count) {
        mini[j] = leaf--;
      } else {
        mini[j] = node++;
      }
    }
    // 更新非叶子节点的属性
    tree[i].left = mini[0];
    tree[i].right = mini[1];
    tree[i].count = tree[mini[0]].count + tree[mini[1]].count;
    tree[mini[0]].parent = i;
    tree[mini[1]].parent = i;
    tree[mini[1]].binary = true;
  }
  // 计算霍夫曼编码
  for (int32_t i = 0; i < osz_; i++) {
    std::vector<int32_t> path;
    std::vector<bool> code;
    int32_t j = i;
    while (tree[j].parent != -1) {
      path.push_back(tree[j].parent - osz_);
      code.push_back(tree[j].binary);
      j = tree[j].parent;
    }
    paths.push_back(path);
    codes.push_back(code);
  }
}

算法首先对输入的叶子节点进行一次排序(








































O(nlogn)


),然后确定两个下标

leaf



node



leaf

总是指向当前最小的叶子节点,

node

总是指向当前最小的非叶子节点,所以,

最小的两个节点可以从 leaf, leaf – 1, node, node + 1 四个位置中取得

,时间复杂度


























O(1)


,每个非叶子节点都进行一次,所以总复杂度为


























O(n)


,算法整体复杂度为








































O(nlogn)