当然可以,以下是用Python编写的Simhash算法计算文本相似度的代码:
import re
import hashlib
class Simhash(object):
def __init__(self, content):
self.simhash = self.get_simhash(content)
def get_features(self, content):
# 对文本进行分词,提取出重要的特征词
features = []
words = re.compile(u'[\u4e00-\u9fa5]+').findall(content)
for word in words:
features.append(hash(word))
return features
def get_simhash(self, content):
features = self.get_features(content)
# 初始化哈希值列表
v = [0] * 128
# 遍历特征词哈希值,进行加权累加
for feature in features:
for i in range(128):
mask = 1 << i
if feature & mask:
v[i] += 1
else:
v[i] -= 1
# 将加权累加的结果映射到01串上
simhash = 0
for i in range(128):
if v[i] > 0:
simhash |= 1 << i
return simhash
def distance(self, other):
# 计算两个simhash之间的海明距离
x = (self.simhash ^ other.simhash) & ((1 << 128) - 1)
ans = 0
while x:
ans += 1
x &= x - 1
return ans
def similarity(self, other):
# 计算两个simhash之间的相似度
d = self.distance(other)
return 1 - d / 128
版权声明:本文为weixin_42601134原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。