正定矩阵的分解

  • Post author:
  • Post category:其他




正定矩阵的分解方法

设三阶

正定矩阵




A

A






A





,若矩阵



A

A






A





的特征值为



λ

1

,

λ

2

,

λ

3

\lambda_1,\lambda_2,\lambda_3







λ










1


















,





λ










2


















,





λ










3





















,对应的

单位化

特征向量分别为



α

1

,

α

2

,

α

3

\alpha_1,\alpha_2,\alpha_3







α










1


















,





α










2


















,





α










3























两两正交

,则存在正交矩阵



Q

=

(

α

1

,

α

2

,

α

3

)

Q = (\alpha_1,\alpha_2,\alpha_3)






Q




=








(



α










1


















,





α










2


















,





α










3


















)





,使得



Q

T

A

Q

=

Λ

=

[

λ

1

λ

2

λ

3

]

Q^{\mathrm{T}}AQ = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix}







Q











T










A


Q




=








Λ




=














































λ










1
































































λ










2
































































λ










3
































































现得到



A

=

Q

Λ

Q

T

A = Q \Lambda Q^{\mathrm{T}}






A




=








Q


Λ



Q











T













,令



Λ

1

=

[

λ

1

λ

2

λ

3

]

\Lambda_1 = \begin{bmatrix} \sqrt{\lambda_1} & & \\ & \sqrt{\lambda_2} & \\ & & \sqrt{\lambda_3} \end{bmatrix}







Λ










1




















=






















































λ










1






























































































λ










2






























































































λ










3























































































,则正定矩阵



A

A






A





有以下分解方法:


【方法一】




A

=

Q

Λ

Q

T

=

Q

(

Λ

1

Λ

1

)

Q

T

=

(

Λ

1

Q

T

)

T

(

Λ

1

Q

T

)

=

C

T

C

(令

C

=

Λ

1

Q

T

A = Q \Lambda Q^{\mathrm{T}} = Q (\Lambda_1 \Lambda_1) Q^{\mathrm{T}} = (\Lambda_1 Q^{\mathrm{T}})^{\mathrm{T}} (\Lambda_1 Q^{\mathrm{T}}) = C^{\mathrm{T}} C(令 C = \Lambda_1 Q^{\mathrm{T}})






A




=








Q


Λ



Q











T












=








Q


(



Λ










1



















Λ










1


















)



Q











T












=








(



Λ










1



















Q











T











)











T










(



Λ










1



















Q











T










)




=









C











T










C


(令


C




=









Λ










1



















Q











T
















【方法二】




A

=

Q

Λ

Q

T

=

Q

Λ

1

Λ

1

Q

T

=

Q

Λ

1

(

Q

T

Q

)

Λ

1

Q

T

=

(

Q

Λ

1

Q

T

)

(

Q

Λ

1

Q

T

)

=

C

2

(令

C

=

Q

Λ

1

Q

T

A = Q \Lambda Q^{\mathrm{T}} = Q \Lambda_1 \Lambda_1 Q^{\mathrm{T}} = Q \Lambda_1 (Q^{\mathrm{T}} Q) \Lambda_1 Q^{\mathrm{T}} = (Q \Lambda_1 Q^{\mathrm{T}})(Q \Lambda_1 Q^{\mathrm{T}}) = C^2 (令 C = Q \Lambda_1 Q^{\mathrm{T}})






A




=








Q


Λ



Q











T












=








Q



Λ










1



















Λ










1



















Q











T












=








Q



Λ










1


















(



Q











T










Q


)



Λ










1



















Q











T












=








(


Q



Λ










1



















Q











T










)


(


Q



Λ










1



















Q











T










)




=









C










2









(令


C




=








Q



Λ










1



















Q











T















此时由

谱分解定理

得:




  • A

    =

    λ

    1

    α

    1

    α

    1

    T

    +

    λ

    2

    α

    2

    α

    2

    T

    +

    λ

    3

    α

    3

    α

    3

    T

    A = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}}






    A




    =









    λ










    1



















    α










    1



















    α










    1









    T





















    +









    λ










    2



















    α










    2



















    α










    2









    T





















    +









    λ










    3



















    α










    3



















    α










    3









    T
























  • B

    =

    λ

    1

    α

    1

    α

    1

    T

    +

    λ

    2

    α

    2

    α

    2

    T

    +

    λ

    3

    α

    3

    α

    3

    T

    B = \sqrt{\lambda_1} \alpha_1 \alpha_1^{\mathrm{T}} + \sqrt{\lambda_2} \alpha_2 \alpha_2^{\mathrm{T}} + \sqrt{\lambda_3} \alpha_3 \alpha_3^{\mathrm{T}}






    B




    =

















    λ










    1









































    α










    1



















    α










    1









    T





















    +

















    λ










    2









































    α










    2



















    α










    2









    T





















    +

















    λ










    3









































    α










    3



















    α










    3









    T






















【拓展】

若要将正定矩阵



A

A






A





分解为



C

3

C^3







C










3












,则可令



Λ

2

=

[

λ

1

3

λ

2

3

λ

3

3

]

\Lambda_2 = \begin{bmatrix} \sqrt[3]{\lambda_1} & & \\ & \sqrt[3]{\lambda_2} & \\ & & \sqrt[3]{\lambda_3} \end{bmatrix}







Λ










2




















=























































3

















λ










1































































































3

















λ










2































































































3

















λ










3























































































,所以有:



A

=

(

Q

Λ

2

Q

T

)

(

Q

Λ

2

Q

T

)

(

Q

Λ

2

Q

T

)

=

C

3

(令

C

=

Q

Λ

2

Q

T

A = (Q \Lambda_2 Q^{\mathrm{T}})(Q \Lambda_2 Q^{\mathrm{T}})(Q \Lambda_2 Q^{\mathrm{T}}) = C^3 (令 C = Q \Lambda_2 Q^{\mathrm{T}})






A




=








(


Q



Λ










2



















Q











T










)


(


Q



Λ










2



















Q











T










)


(


Q



Λ










2



















Q











T










)




=









C










3









(令


C




=








Q



Λ










2



















Q











T


















相关例题

【例 1】已知矩阵



A

=

[

0

0

1

0

1

0

1

0

0

]

A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}






A




=













































0








0








1





























0








1








0





























1








0








0

















































,求一个可逆矩阵



C

C






C





,使得



C

3

=

A

C^3 = A







C










3











=








A





【解】



C

3

=

A

C^3 = A







C










3











=








A





的特征值为



1

,

1

,

1

1,1,-1






1


,




1


,







1





,则



C

C






C





的特征值为



1

3

,

1

3

,

1

3

\sqrt[3]{1},\sqrt[3]{1},\sqrt[3]{-1}
















3
















1
























,














3
















1
























,














3



















1



























(即



1

,

1

,

1

1,1,-1






1


,




1


,







1





),所以



C

E

C-E






C













E





的特征值为



0

,

0

,

2

0,0,-2






0


,




0


,







2








A

A






A





的特征值



1

-1









1





所对应的特征向量为



α

3

=

1

2

(

1

,

0

,

1

)

T

\alpha_3 = \frac{1}{\sqrt{2}} (1,0,-1)^{\mathrm{T}}







α










3




















=




























2






































1





















(


1


,




0


,







1



)











T













,则



C

E

C-E






C













E





的特征值



λ

3

=

2

\lambda_3 = -2







λ










3




















=











2





所对应的特征向量也为



α

3

=

1

2

(

1

,

0

,

1

)

T

\alpha_3 = \frac{1}{\sqrt{2}} (1,0,-1)^{\mathrm{T}}







α










3




















=




























2






































1





















(


1


,




0


,







1



)











T













由谱分解定理得





C

E

=

λ

3

α

3

α

3

T

=

2

1

2

[

1

0

1

]

1

2

(

1

,

0

,

1

)

=

[

1

0

1

0

0

0

1

0

1

]

=

[

1

0

1

0

0

0

1

0

1

]

C

=

(

C

E

)

+

E

=

[

0

0

1

0

1

0

1

0

0

]

\begin{aligned} C-E &= \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} \\ &= -2 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} (1,0,-1) \\ &= -\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} \\ \therefore C &= (C-E) + E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \end{aligned}
















C









E

























C





























=





λ










3



















α










3



















α










3









T





























=







2




























2




































1



























































1








0











1








































































2




































1




















(


1


,




0


,







1


)












=














































1








0











1





























0








0








0
































1








0








1
















































=












































1








0








1





























0








0








0





























1








0











1
























































=




(


C









E


)




+




E




=









































0








0








1





























0








1








0





























1








0








0



































































【例 2】已知矩阵



A

=

[

0

0

1

0

1

0

1

0

0

]

A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}






A




=













































0








0








1





























0








1








0





























1








0








0

















































,求一个正定矩阵



C

C






C





,使得



C

2

=

A

+

2

E

C^2 = A+2E







C










2











=








A




+








2


E





【解】



A

A






A





的特征值为



1

,

1

,

1

1,1,-1






1


,




1


,







1





,则



C

2

=

A

+

2

E

C^2 = A+2E







C










2











=








A




+








2


E





的特征值为



3

,

3

,

1

3,3,1






3


,




3


,




1





,则



C

C






C





的特征值为



3

,

3

,

1

\sqrt{3},\sqrt{3},1














3
























,












3
























,




1





,所以



C

3

E

C-\sqrt{3}E






C





















3
























E





的特征值为



0

,

0

,

1

3

0,0,1-\sqrt{3}






0


,




0


,




1





















3






























A

A






A





的特征值



1

-1









1





所对应的特征向量为



α

3

=

1

2

(

1

,

0

,

1

)

T

\alpha_3 = \frac{1}{\sqrt{2}} (1,0,-1)^{\mathrm{T}}







α










3




















=




























2






































1





















(


1


,




0


,







1



)











T













,则



C

3

E

C-\sqrt{3}E






C





















3
























E





的特征值



λ

3

=

1

3

\lambda_3 = 1-\sqrt{3}







λ










3




















=








1





















3



























所对应的特征向量也为



α

3

=

1

2

(

1

,

0

,

1

)

T

\alpha_3 = \frac{1}{\sqrt{2}} (1,0,-1)^{\mathrm{T}}







α










3




















=




























2






































1





















(


1


,




0


,







1



)











T













由谱分解定理得





C

3

E

=

λ

3

α

3

α

3

T

=

(

1

3

)

1

2

[

1

0

1

]

1

2

(

1

,

0

,

1

)

=

1

3

2

[

1

0

1

0

0

0

1

0

1

]

=

[

1

3

2

0

3

1

2

0

0

0

3

1

2

0

1

3

2

]

C

=

(

C

3

E

)

+

3

E

=

[

3

+

1

2

0

3

1

2

0

3

0

3

1

2

0

3

+

1

2

]

\begin{aligned} C-\sqrt{3}E &= \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} \\ &= (1-\sqrt{3}) \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} (1,0,-1) \\ &= \frac{1-\sqrt{3}}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1-\sqrt{3}}{2} & 0 & \frac{\sqrt{3}-1}{2} \\ 0 & 0 & 0 \\ \frac{\sqrt{3}-1}{2} & 0 & \frac{1-\sqrt{3}}{2} \end{bmatrix} \\ \therefore C &= (C-\sqrt{3}E) + \sqrt{3}E = \begin{bmatrix} \frac{\sqrt{3}+1}{2} & 0 & \frac{\sqrt{3}-1}{2} \\ 0 & \sqrt{3} & 0 \\ \frac{\sqrt{3}-1}{2} & 0 & \frac{\sqrt{3}+1}{2} \end{bmatrix} \end{aligned}
















C

















3
























E































C





























=





λ










3



















α










3



















α










3









T





























=




(


1

















3
























)




























2




































1



























































1








0











1








































































2




































1




















(


1


,




0


,







1


)












=















2














1

















3

















































































1








0











1





























0








0








0
































1








0








1
























































=





















































2
















1













3

















































0




















2
























3



























1
















































0








0








0









































2
























3



























1



























0




















2
















1













3

































































































=




(


C

















3
























E


)




+












3
























E




=





















































2
























3
























+


1



























0




















2
























3



























1
















































0
















3






























0









































2
























3



























1



























0




















2
























3
























+


1






















































































【例 3】已知矩阵



A

=

[

0

0

1

0

1

0

1

0

0

]

A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}






A




=













































0








0








1





























0








1








0





























1








0








0

















































,求一个正定矩阵



C

C






C





,使得



C

n

=

A

+

2

E

C^n = A+2E







C










n











=








A




+








2


E





【解】该题与上题的解法是相似的,现直接给出答案:





C

=

[

3

n

+

1

2

0

3

n

1

2

0

3

n

0

3

n

1

2

0

3

n

+

1

2

]

C = \begin{bmatrix} \frac{\sqrt[n]{3}+1}{2} & 0 & \frac{\sqrt[n]{3}-1}{2} \\ 0 & \sqrt[n]{3} & 0 \\ \frac{\sqrt[n]{3}-1}{2} & 0 & \frac{\sqrt[n]{3}+1}{2} \end{bmatrix}






C




=

























































2


























n
















3
























+


1



























0




















2


























n
















3



























1
















































0


















n
















3






























0









































2


























n
















3



























1



























0




















2


























n
















3
























+


1