2018年蓝桥杯省赛javaA组真题解答

  • Post author:
  • Post category:java




试题 A.平方和

本题总分:5 分

【问题描述】

小明对数位中含有 2、0、1、9 的数字很感兴趣,在 1 到 40 中这样的数包括 1、2、9、10 至 32、39 和 40,共 28 个,他们的和是 574,平方和是 14362。注意,平方和是指将每个数分别平方后求和。

请问,在 1 到 2019 中,所有这样的数的平方和是多少?

【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

提示:如果你编写程序计算,发现结果是负的,请仔细检查自己的程序, 不要怀疑考场的编程软件。

【题目分析】

利用for循环,循环因子i从1到2019,写一个函数判断i是否含2、0、1、9,若含则平方求和。注意最终结果int型会溢出,用long或double即可防止溢出

答案:2658417853

import java.util.Scanner;
public class A {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		long sum=0;
		for(int i=1;i<=2019;i++) {
			if(shu(i)) {
				sum+=i*i;
			}
		}
		System.out.println(sum);
	}
	public static boolean shu(int n) {
		while(n>0) {
			if(n%10==2||n%10==0||n%10==1||n%10==9) {
				return true;
			}else {
				n=n/10;
			}
		}
		return false;
	}
}
//2658417853



试题 B: 数列求值

本题总分:5 分

【问题描述】

给定数列 1, 1, 1, 3, 5, 9, 17, …,从第 4 项开始,每项都是前 3 项的和。求

第 20190324 项的最后 4 位数字。

【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个 4 位整数(提示:答案的千位不为 0),在提交答案时只填写这个整数,填写多余的内容将无法得分。

【题目分析】

此题不需要设立20190324项数组,

每次循环保持三个变量顺序:

a[i],a[i+1],a[i+2] —>a[i+1],a[i+2],(a[i]+a[i+1]+a[i+2])%10000

每次循环都对结果取模10000,对最终结果无影响

答案:4659

import java.util.Scanner;
public class B {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int x=1,y=1,z=1,t=1;
		for(int i=4;i<=20190324;i++) {
			t=z;
			z=(x+y+z)%10000;
			x=y;
			y=t;
		}
		System.out.println(z);
	}
}
//4659



试题 C: 最大降雨量

本题总分:10 分

【问题描述】

由于沙之国长年干旱,法师小明准备施展自己的一个神秘法术来求雨。

这个法术需要用到他手中的 49 张法术符,上面分别写着 1 至 49 这 49 个

数字。法术一共持续 7 周,每天小明都要使用一张法术符,法术符不能重复使用。

每周,小明施展法术产生的能量为这周 7 张法术符上数字的中位数。法术

施展完 7 周后,求雨将获得成功,降雨量为 7 周能量的中位数。

由于干旱太久,小明希望这次求雨的降雨量尽可能大,请大最大值是多少?

【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

【题目分析】

在这里插入图片描述

如图,注意看四排四列的括号项即为降雨量,它既是纵列中位数,也是横列中位数,

所以必有3*4+3=14个数比降雨量大,49里面有14个数比降雨量大,所以降雨量最大为34

答案:34

// 此题无需代码



试题 D: 迷宫

本题总分:10 分

【问题描述】

下图给出了一个迷宫的平面图,其中标记为 1 的为障碍,标记为 0 的为可以通行的地方。

010000

000100

001001

110000

迷宫的入口为左上角,出口为右下角,在迷宫中,只能从一个位置走到这 个它的上、下、左、右四个方向之一。

对于上面的迷宫,从入口开始,可以按DRRURRDDDR 的顺序通过迷宫, 一共 10 步。其中 D、U、L、R 分别表示向下、向上、向左、向右走。

对于下面这个更复杂的迷宫(30 行 50 列),请找出一种通过迷宫的方式,其使用的步数最少,在步数最少的前提下,请找出字典序最小的一个作为答案。请注意在字典序中D<L<R<U。(如果你把以下文字复制到文本文件中,请务 必检查复制的内容是否与文档中的一致。在试题目录下有一个文件 maze.txt, 内容与下面的文本相同)

01010101001011001001010110010110100100001000101010
00001000100000101010010000100000001001100110100101
01111011010010001000001101001011100011000000010000
01000000001010100011010000101000001010101011001011
00011111000000101000010010100010100000101100000000
11001000110101000010101100011010011010101011110111
00011011010101001001001010000001000101001110000000
10100000101000100110101010111110011000010000111010
00111000001010100001100010000001000101001100001001
11000110100001110010001001010101010101010001101000
00010000100100000101001010101110100010101010000101
11100100101001001000010000010101010100100100010100
00000010000000101011001111010001100000101010100011
10101010011100001000011000010110011110110100001000
10101010100001101010100101000010100000111011101001
10000000101100010000101100101101001011100000000100
10101001000000010100100001000100000100011110101001
00101001010101101001010100011010101101110000110101
11001010000100001100000010100101000001000111000010
00001000110000110101101000000100101001001000011101
10100101000101000000001110110010110101101010100001
00101000010000110101010000100010001001000100010101
10100001000110010001000010101001010101011111010010
00000100101000000110010100101001000001000000000010
11010000001001110111001001000011101001011011101000
00000110100010001000100000001000011101000000110011
10101000101000100010001111100010101001010000001000
10000010100101001010110000000100101010001011101000
00111100001000010000000110111000000001000000001011
10000001100111010111010001000110111010101101111000

【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个字符串,包含四种字母 D、U、L、R,在提交答案时只填写这个字符串,填写多余的内容将无法得分。

【题目分析】

本题使用广度优先搜索算法,

char[][] maze = new char[30][50]; 用来记录迷宫

char[] c = { ‘D’, ‘L’, ‘R’, ‘U’ }; 表示上下左右四种移动方式

int[][] dis = new int[30][50]; 记录迷宫的路径

int[][] dir = { {1, 0}, {0,-1}, {0, 1}, {-1,0}}; 对应坐标的上下左右的四种变化

利用广度优先搜索,若某点有上下左右四个移动方向,先判断能否移动,若能则将移动的目标点进入队列;判断完四个方向后,弹出该点,从队列中继续取出点,重复上述判断,直到找到终点,再根据dis数组,将移动路径输出出来。因为是按照D、L、R、U的顺序进行判断的,所以输出为路径的最小字典序。

import java.util.*;
public class D {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);//将注释的迷宫输入得到结果
		Queue<Integer> queue = new LinkedList<Integer>();
		int n=30,m=50;
		char[][] maze = new char[30][50];
		char[] c = { 'D', 'L', 'R', 'U' };
		int[][] dis = new int[30][50];
		int[][] dir = { { 1, 0 }, { 0, -1 }, { 0, 1 }, { -1, 0 } };
		for (int i = 0; i < n; i++) {
			String string = in.next();
			for (int j = 0; j < m; j++)
				maze[i][j] = string.charAt(j);
		}
		queue.add((n - 1) * m + m - 1);
		while (!queue.isEmpty()) {
			int temp = queue.poll();
			for (int i = 0; i < 4; i++) {
				int xx = temp / m + dir[i][0];
				int yy = temp % m + dir[i][1];
				if (xx < 0 || xx >= n || yy < 0 | yy >= m || maze[xx][yy] == '1' || dis[xx][yy] != 0) {
					continue;
				}
				queue.add(xx * m + yy);
				dis[xx][yy] = dis[temp / m][temp % m] + 1;
				if (xx == 0 && yy == 0)
					break;
			}
		}
		dis[n - 1][m - 1] = 0;
		String path = "";
		int x = 0, y = 0;
		while (x != n - 1 || y != m - 1) {
			for (int i = 0; i < 4; i++) {
				int xx = x + dir[i][0];
				int yy = y + dir[i][1];
				if (xx < 0 || xx >= n || yy < 0 | yy >= m || maze[xx][yy] == '1')
					continue;
				if (dis[x][y] == dis[xx][yy] + 1) {
					x = xx;
					y = yy;
					path += c[i];
					break;
				}
			}
		}
		System.out.println(path);
	}
}
//DDDDRRURRRRRRDRRRRDDDLDDRDDDDDDDDDDDDRDDRRRURRUURRDDDDRDRRRRRRDRRURRDDDRRRRUURUUUUUUULULLUUUURRRRUULLLUUUULLUUULUURRURRURURRRDDRRRRRDDRRDDLLLDDRRDDRDDLDDDLLDDLLLDLDDDLDDRRRRRRRRRDDDDDDRR

【答案】DDDDRRURRRRRRDRRRRDDDLDDRDDDDDDDDDDDDRDDRRRURRUURRDDDDRDRRRRRRDRRURRDDDRRRRUURUUUUUUULULLUUUURRRRUULLLUUUULLUUULUURRURRURURRRDDRRRRRDDRRDDLLLDDRRDDRDDLDDDLLDDLLLDLDDDLDDRRRRRRRRRDDDDDDRR

(终极偷鸡秘法!打开excel,将迷宫导入,0全部涂上颜色,一看便知!)



试题 E:RSA 解密

本题总分:15 分

【问题描述】

RSA 是一种经典的加密算法。它的基本加密过程如下。

首先生成两个质数 p, q,令 n = p · q,设 d 与 (p − 1) · (q − 1) 互质,则可找到 e 使得 d · e 除 (p − 1) · (q − 1) 的余数为 1。

n, d, e 组成了私钥,n, d 组成了公钥。

当使用公钥加密一个整数 X 时(小于 n),计算 C = Xd mod n,则 C 是加密后的密文。

当收到密文 C 时,可使用私钥解开,计算公式为 X = Ce mod n。例如,当 p = 5, q = 11, d = 3 时,n = 55, e = 27。

若加密数字 24,得 243 mod 55 = 19。解密数字 19,得 1927 mod 55 = 24。

现在你知道公钥中 n = 1001733993063167141, d = 212353,同时你截获了别人发送的密文 C = 20190324,请问,原文是多少?

【答案提交】

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

【题目分析】

首先要对公钥中的n进行质因子分解,得到p = 891234941, q = 1123984201

因为d * e % (p-1) * (q-1) == 1,可得e = 823816093931522017

最后X = C^e mod n =579706994112328949

注意,此题数值极大,运算也很复杂,暴力算法普通计算机需要算十年,java中可以利用BigInteger,运算过程中要掌握方法,此题就需要用到快速幂运算和扩展欧几里得算法

// 代码并不会写O(∩_∩)O哈哈~



试题 F: 完全二叉树的权值

时间限制: 1.0s 内存限制: 256.0MB 本题总分:15 分

【问题描述】

给定一棵包含 N 个节点的完全二叉树,树上每个节点都有一个权值,按从上到下、从左到右的顺序依次是 A1, A2, · · · AN,如下图所示:

现在小明要把相同深度的节点的权值加在一起,他想知道哪个深度的节点权值之和最大?如果有多个深度的权值和同为最大,请你输出其中最小的深度。

注:根的深度是 1。

【输入格式】

第一行包含一个整数 N。

第二行包含 N 个整数 A1, A2, · · · AN 。

【输出格式】

输出一个整数代表答案。

【样例输入】

7

1 6 5 4 3 2 1

【样例输出】

2

【评测用例规模与约定】

对于所有评测用例,1 ≤ N ≤ 100000,−100000 ≤ Ai ≤ 100000。

【题目分析】

给定一个节点的序号,可以得到该节点所在的层数,

所以设立两个数组:节点数组a[]和层数组b[]

每个节点将其值加到其对应的层数组上,最后判断层数组的权值最大的层数,即该层的节点权值之和最大。

注意该题给出1 ≤ N ≤ 100000,−100000 ≤ Ai ≤ 100000,为了防止溢出最好是设置double数组。

import java.util.Scanner;
public class F {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int n=in.nextInt();
		int h=0;
		double m=0;
		double[] a=new double[n];
		double[] b=new double[floor(n)+1];
		for(int i=0;i<n;i++) {
			a[i]=in.nextInt();
			b[floor(i)]+=a[i];
		}
		m=b[0];
		for(int i=1;i<n;i++) {
			if(m<b[floor(i)]) {
				m=b[floor(i)];
				h=floor(i);
			}
		}
		System.out.println(h+1);
	}
	public static int floor(int n) {
		int h=1;
		n++;
		while(n/2>0) {
			n=n/2;
			h++;
		}
		return h-1;
	}
}



试题 G: 外卖店优先级

时间限制: 1.0s 内存限制: 256.0MB 本题总分:20 分

【问题描述】

“饱了么”外卖系统中维护着 N 家外卖店,编号 1 ∼ N。每家外卖店都有一个优先级,初始时 (0 时刻) 优先级都为 0。

每经过 1 个时间单位,如果外卖店没有订单,则优先级会减少 1,最低减到 0;而如果外卖店有订单,则优先级不减反加,每有一单优先级加 2。

如果某家外卖店某时刻优先级大于 5,则会被系统加入优先缓存中;如果优先级小于等于 3,则会被清除出优先缓存。

给定 T 时刻以内的 M 条订单信息,请你计算 T 时刻时有多少外卖店在优先缓存中。

【输入格式】

第一行包含 3 个整数 N、M 和 T 。

以下 M 行每行包含两个整数 ts 和 id,表示 ts 时刻编号 id 的外卖店收到一个订单。

【输出格式】

输出一个整数代表答案。

【样例输入】

2 6 6

1 1

5 2

3 1

6 2

2 1

6 2

【样例输出】

1

【样例解释】

6 时刻时,1 号店优先级降到 3,被移除出优先缓存;2 号店优先级升到 6, 加入优先缓存。所以是有 1 家店 (2 号) 在优先缓存中。

【评测用例规模与约定】

对于 80% 的评测用例,1 ≤ N, M, T ≤ 10000。

对于所有评测用例,1 ≤ N, M, T ≤ 100000,1 ≤ ts ≤ T ,1 ≤ id ≤ N。

【题目分析】

体现java方便性的时候到了!!!

该题可以利用数据结构,写一个shop类,存储订单和优先级信息。

主函数中建立shop类数组,将订单分别录入对应的shop中,最后再根据题设计算shop的优先级,得到最后时刻在优先队列的shop数量。

如此,可以很轻松的得到结果!

import java.util.Arrays;
import java.util.Scanner;
public class G {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int ss=0;
		int n=in.nextInt();
		int m=in.nextInt();
		int t=in.nextInt();
		shop[] s=new shop[n];
		for(int i=0;i<n;i++) {
			s[i]=new shop(t);
		}
		for(int i=0;i<m;i++) {
			int ts=in.nextInt();
			int id=in.nextInt();
			s[id-1].add(ts);
		}
		for(int i=0;i<n;i++) {
			System.out.println(s[i].first()+" "+s[i].f);
			ss+=s[i].first();
		}
		System.out.println(ss);
	}
}
class shop{
	int f,q;
	int[] t;
	public shop(int T) {
		f=0;
		t=new int[T+1];
	}
	public void add(int T) {
		t[T]++;
	}
	public int first() {//判断所处队列
		f=0;
		for(int i=0;i<t.length;i++) {
			if(t[i]==0) {
				if(f>0) {
					f--;
				}
			}else {
				f+=2*t[i];
			}
			if(f>5&&q==0) {
				q=1;
			}else if(f<=3&&q==1) {
				q=0;
			}
		}
		return q;
	}
}



试题 H: 修改数组

时间限制: 1.0s 内存限制: 256.0MB 本题总分:20 分

【问题描述】

给定一个长度为 N 的数组 A = [A1, A2, · · · AN],数组中有可能有重复出现的整数。

现在小明要按以下方法将其修改为没有重复整数的数组。小明会依次修改

A2, A3, · · · , AN。

当修改 Ai 时,小明会检查 Ai 是否在 A1 ∼ Ai−1 中出现过。如果出现过,则小明会给 Ai 加上 1 ;如果新的 Ai 仍在之前出现过,小明会持续给 Ai 加 1 ,直到 Ai 没有在 A1 ∼ Ai−1 中出现过。

当 AN 也经过上述修改之后,显然 A 数组中就没有重复的整数了。现在给定初始的 A 数组,请你计算出最终的 A 数组。

【输入格式】

第一行包含一个整数 N。

第二行包含 N 个整数 A1, A2, · · · , AN 。

【输出格式】

输出 N 个整数,依次是最终的 A1, A2, · · · , AN。

【样例输入】

5

2 1 1 3 4

【样例输出】

2 1 3 4 5

【评测用例规模与约定】

对于 80% 的评测用例,1 ≤ N ≤ 10000。

对于所有评测用例,1 ≤ N ≤ 100000,1 ≤ Ai ≤ 1000000。

【题目分析】

此题个人想法利用桶排序,读入数i,先看i桶中有没有数,没有则在i桶中计数加一,若有则i++,重复上述判断过程即可。

(算法很笨…但蓝桥杯有名暴力杯,还是能过的)

import java.util.Arrays;
import java.util.Scanner;
public class H {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int n=in.nextInt();
		int[] a=new int[n];
		int[] b=new int[100000];
		for(int i=0;i<n;i++) {
			a[i]=in.nextInt();
			while(b[a[i]]>0) {
				a[i]++;
			}
			b[a[i]]++;
		}
		for(int i=0;i<n;i++) {
			System.out.print(a[i]+" ");
		}
	}
}



试题 I: 糖果

时间限制: 1.0s 内存限制: 256.0MB 本题总分:25 分

【问题描述】

糖果店的老板一共有 M 种口味的糖果出售。为了方便描述,我们将 M 种口味编号 1 ∼ M。

小明希望能品尝到所有口味的糖果。遗憾的是老板并不单独出售糖果,而 是 K 颗一包整包出售。

幸好糖果包装上注明了其中 K 颗糖果的口味,所以小明可以在买之前就知道每包内的糖果口味。

给定 N 包糖果,请你计算小明最少买几包,就可以品尝到所有口味的糖果。

【输入格式】

第一行包含三个整数 N、M 和 K。

接下来 N 行每行 K 这整数 T1, T2, · · · , TK,代表一包糖果的口味。

【输出格式】

一个整数表示答案。如果小明无法品尝所有口味,输出 −1。

【样例输入】

6 5 3

1 1 2

1 2 3

1 1 3

2 3 5

5 4 2

5 1 2

【样例输出】

2

【评测用例规模与约定】

对于 30% 的评测用例,1 ≤ N ≤ 20 。

对于所有评测样例,1 ≤ N ≤ 100,1 ≤ M ≤ 20,1 ≤ K ≤ 20,1 ≤ Ti ≤ M。

【题目分析】

做这题我的思想是回溯,函数solu(f,u),f为前f包糖果,u为前n包已拿数目,函数fulll()判断是否全部覆盖全部糖果口味,一旦full()成立,记录下此时u值并退出当前搜索,最终得到覆盖全部糖果所需的最小的u数值。

import java.util.*;
import java.io.*;
public class I {
	static int g;
	static int[] ts;
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int n=in.nextInt();
		int m=in.nextInt();
		int k=in.nextInt();
		int[][] a=new int[n][k];
		g=n;
		ts=new int[m];
		for(int i=0;i<n;i++) {
			for(int j=0;j<k;j++) {
				a[i][j]=in.nextInt();
			}
		}
		solu(a,0,0);
		System.out.println(g);
	}
	public static void solu(int[][] a,int f,int u) {
		if(f==a.length) {
			return;
		}
		solu(a,f+1,u);
		for(int i=0;i<a[f].length;i++) {
			ts[a[f][i]-1]++;
		}
		if(full()) {
			if(g>u+1) {
				g=u+1;
			}
		}else {
			solu(a,f+1,u+1);
		}
		for(int i=0;i<a[f].length;i++) {
			ts[a[f][i]-1]--;
		}
	}
	public static boolean full() {
		for(int i=0;i<ts.length;i++) {
			if(ts[i]==0) {
				return false;
			}
		}
		return true;
	}
}



试题 J: 组合数问题

时间限制: 1.0s 内存限制: 256.0MB 本题总分:25 分

【问题描述】

给 n, m, k, 求 有 多 少 对 (i, j) 满 足 1 ≤ i ≤ n, 0 ≤ j ≤ min(i, m) 且 C j ≡

0(mod k),k 是质数。其中 C j 是组合数,表示从 i 个不同的数中选出 j 个组成

一个集合的方案数。

【输入格式】

第一行两个数 t, k,其中 t 代表该测试点包含 t 组询问,k 的意思与上文中相同。

接下来 t 行每行两个整数 n, m,表示一组询问。

【输出格式】

输出 t 行,每行一个整数表示对应的答案。由于答案可能很大,请输出答案除以 109 + 7 的余数。

【样例输入】

1 2

3 3

【样例输出】

1

【样例说明】

在所有可能的情况中,只有 C1 = 2 是 2 的倍数。

【样例输入】

2 5

4 5

6 7

【样例输出】

0

7

【样例输入】

3 23

23333333 23333333

233333333 233333333

2333333333 2333333333

【样例输出】

851883128

959557926

680723120

【数据规模和约定】

对于所有评测用例,1 ≤ k ≤ 108, 1 ≤ t ≤ 105, 1 ≤ n, m ≤ 1018,且 k 是质数。评测时将使用 10 个评测用例测试你的程序,每个评测用例的限制如下:

评测用例编号 t n, m k

1, 2 ≤ 1 ≤ 2000 ≤ 100

3, 4 ≤ 105 ≤ 2000 ≤ 100

5, 6, 7 ≤ 100 ≤ 1018 ≤ 100

8, 9, 10 ≤ 105 ≤ 1018 ≤ 108

【题目分析】

t次循环,分别对数据进行判断。

二重循环1 ≤ i ≤ n, 0 ≤ j ≤ min(i, m),如果C j ≡0(mod k),计数加1,当循环结束输出计数即可。

此题数据很大,数据应用double。

这题对时间复杂度的要求很高,我的算法并不能完全通过,但写出来还是很简单的,对于考试来说,最后一道题能写出来一个样例拿点分也很不错了。

import java.util.*;
public class J {
	public static void main(String[] args) {
		Scanner in=new Scanner(System.in);
		int t=in.nextInt();
		int k=in.nextInt();
		while(t-->0) {
			int sum=0;
			int n=in.nextInt();
			int m=in.nextInt();
			for(int i=1;i<=n;i++) {
				for(int j=0;j<Math.min(i, m);j++) {
					if(c(i,j)%k==0) {
						sum++;
					}
					if(sum==1000000007) {
						sum=0;
					}
				}
			}
			System.out.println(sum);
		}
	}
	public static double c(double i,double j) {
		if(j==0) {
			return 1;
		}
		return i/j*c(i-1,j-1);
	}
}



总结

蓝桥杯省赛整体来说还是很简单的,个人感觉技巧大于算法…像降雨、迷宫等题都可以偷鸡,最重要还是考试时不要慌张,冷静思考,能拿不要看一道题不会就不去动手,也许写出来一两个样例,这道题也不算亏。最后祝大家都能进国赛!



版权声明:本文为leangx86原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。