[学习笔记] [机器学习] 7. 集成学习(Bagging、随机森林、Boosting、GBDT)
视频链接 数据集下载地址:无需下载 1. 集成学习算法简介 学习目标 : 了解什么是集成学习 知道机器学习中的两个核心任务 了解集成学习中的 Boosting 和 Bagging 1.1 什么是集成学习 集成学习(Ensemble Learning)通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器(模型),各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类…