opencv-python 图像处理(二)

  • Post author:
  • Post category:python




灰度图

import cv2 #opencv读取的格式是BGR

import numpy as np

import matplotlib.pyplot as plt#Matplotlib是RGB

img=cv2.imread(‘cat.jpg’)

img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

img_gray.shape

cv2.imshow(“img_gray”, img_gray)

cv2.waitKey(0)

cv2.destroyAllWindows()



HSV

  • H – 色调(主波长)。
  • S – 饱和度(纯度/颜色的阴影)。
  • V值(强度)

hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

cv2.imshow(“hsv”, hsv)

cv2.waitKey(0)

cv2.destroyAllWindows()



图像阈值



ret, dst = cv2.threshold(src, thresh, maxval, type)

  • src: 输入图,只能输入单通道图像,通常来说为灰度图

  • dst: 输出图

  • thresh: 阈值

  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值

  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

  • cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0

  • cv2.THRESH_BINARY_INV THRESH_BINARY的反转

  • cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变

  • cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0

  • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)

ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)

ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)

ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)

ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

titles = [‘Original Image’, ‘BINARY’, ‘BINARY_INV’, ‘TRUNC’, ‘TOZERO’, ‘TOZERO_INV’]

images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):

plt.subplot(2, 3, i + 1), plt.imshow(images[i], ‘gray’)

plt.title(titles[i])

plt.xticks([]), plt.yticks([])

plt.show()



图像平滑

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6KJc9DyY-1610550051655)(attachment:image.png)]

img = cv2.imread(‘lenaNoise.png’)

cv2.imshow(‘img’, img)

cv2.waitKey(0)

cv2.destroyAllWindows()



均值滤波



简单的平均卷积操作

blur = cv2.blur(img, (3, 3))

cv2.imshow(‘blur’, blur)

cv2.waitKey(0)

cv2.destroyAllWindows()



方框滤波



基本和均值一样,可以选择归一化

box = cv2.boxFilter(img,-1,(3,3), normalize=True)

cv2.imshow(‘box’, box)

cv2.waitKey(0)

cv2.destroyAllWindows()



方框滤波



基本和均值一样,可以选择归一化,容易越界

box = cv2.boxFilter(img,-1,(3,3), normalize=False)

cv2.imshow(‘box’, box)

cv2.waitKey(0)

cv2.destroyAllWindows()



高斯滤波



高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的

aussian = cv2.GaussianBlur(img, (5, 5), 1)

cv2.imshow(‘aussian’, aussian)

cv2.waitKey(0)

cv2.destroyAllWindows()



中值滤波



相当于用中值代替

median = cv2.medianBlur(img, 5) # 中值滤波

cv2.imshow(‘median’, median)

cv2.waitKey(0)

cv2.destroyAllWindows()



展示所有的

res = np.hstack((blur,aussian,median))

#print (res)

cv2.imshow(‘median vs average’, res)

cv2.waitKey(0)

cv2.destroyAllWindows()



形态学-腐蚀操作

img = cv2.imread(‘dige.png’)

cv2.imshow(‘img’, img)

cv2.waitKey(0)

cv2.destroyAllWindows()

kernel = np.ones((3,3),np.uint8)

erosion = cv2.erode(img,kernel,iterations = 1)

cv2.imshow(‘erosion’, erosion)

cv2.waitKey(0)

cv2.destroyAllWindows()

pie = cv2.imread(‘pie.png’)

cv2.imshow(‘pie’, pie)

cv2.waitKey(0)

cv2.destroyAllWindows()

kernel = np.ones((30,30),np.uint8)

erosion_1 = cv2.erode(pie,kernel,iterations = 1)

erosion_2 = cv2.erode(pie,kernel,iterations = 2)

erosion_3 = cv2.erode(pie,kernel,iterations = 3)

res = np.hstack((erosion_1,erosion_2,erosion_3))

cv2.imshow(‘res’, res)

cv2.waitKey(0)

cv2.destroyAllWindows()



形态学-膨胀操作

img = cv2.imread(‘dige.png’)

cv2.imshow(‘img’, img)

cv2.waitKey(0)

cv2.destroyAllWindows()

kernel = np.ones((3,3),np.uint8)

dige_erosion = cv2.erode(img,kernel,iterations = 1)

cv2.imshow(‘erosion’, erosion)

cv2.waitKey(0)

cv2.destroyAllWindows()

kernel = np.ones((3,3),np.uint8)

dige_dilate = cv2.dilate(dige_erosion,kernel,iterations = 1)

cv2.imshow(‘dilate’, dige_dilate)

cv2.waitKey(0)

cv2.destroyAllWindows()

pie = cv2.imread(‘pie.png’)

kernel = np.ones((30,30),np.uint8)

dilate_1 = cv2.dilate(pie,kernel,iterations = 1)

dilate_2 = cv2.dilate(pie,kernel,iterations = 2)

dilate_3 = cv2.dilate(pie,kernel,iterations = 3)

res = np.hstack((dilate_1,dilate_2,dilate_3))

cv2.imshow(‘res’, res)

cv2.waitKey(0)

cv2.destroyAllWindows()



开运算与闭运算



开:先腐蚀,再膨胀

img = cv2.imread(‘dige.png’)

kernel = np.ones((5,5),np.uint8)

opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

cv2.imshow(‘opening’, opening)

cv2.waitKey(0)

cv2.destroyAllWindows()



闭:先膨胀,再腐蚀

img = cv2.imread(‘dige.png’)

kernel = np.ones((5,5),np.uint8)

closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow(‘closing’, closing)

cv2.waitKey(0)

cv2.destroyAllWindows()



梯度运算



梯度=膨胀-腐蚀

pie = cv2.imread(‘pie.png’)

kernel = np.ones((7,7),np.uint8)

dilate = cv2.dilate(pie,kernel,iterations = 5)

erosion = cv2.erode(pie,kernel,iterations = 5)

res = np.hstack((dilate,erosion))

cv2.imshow(‘res’, res)

cv2.waitKey(0)

cv2.destroyAllWindows()

gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)

cv2.imshow(‘gradient’, gradient)

cv2.waitKey(0)

cv2.destroyAllWindows()



礼帽与黑帽

  • 礼帽 = 原始输入-开运算结果
  • 黑帽 = 闭运算-原始输入

#礼帽

img = cv2.imread(‘dige.png’)

tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)

cv2.imshow(‘tophat’, tophat)

cv2.waitKey(0)

cv2.destroyAllWindows()

#黑帽

img = cv2.imread(‘dige.png’)

blackhat = cv2.morphologyEx(img,cv2.MORPH_BLACKHAT, kernel)

cv2.imshow(‘blackhat ‘, blackhat )

cv2.waitKey(0)

cv2.destroyAllWindows()



图像梯度-Sobel算子

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fKIp4b32-1610550051660)(sobel_1.png)]

img = cv2.imread(‘pie.png’,cv2.IMREAD_GRAYSCALE)

cv2.imshow(“img”,img)

cv2.waitKey()

cv2.destroyAllWindows()

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小

def cv_show(img,name):

cv2.imshow(name,img)

cv2.waitKey()

cv2.destroyAllWindows()

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)

cv_show(sobelx,‘sobelx’)

白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)

sobelx = cv2.convertScaleAbs(sobelx)

cv_show(sobelx,‘sobelx’)

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)

sobely = cv2.convertScaleAbs(sobely)

cv_show(sobely,‘sobely’)

分别计算x和y,再求和

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)

cv_show(sobelxy,‘sobelxy’)

不建议直接计算

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)

sobelxy = cv2.convertScaleAbs(sobelxy)

cv_show(sobelxy,‘sobelxy’)

img = cv2.imread(‘lena.jpg’,cv2.IMREAD_GRAYSCALE)

cv_show(img,‘img’)

img = cv2.imread(‘lena.jpg’,cv2.IMREAD_GRAYSCALE)

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)

sobelx = cv2.convertScaleAbs(sobelx)

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)

sobely = cv2.convertScaleAbs(sobely)

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)

cv_show(sobelxy,‘sobelxy’)

img = cv2.imread(‘lena.jpg’,cv2.IMREAD_GRAYSCALE)

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)

sobelxy = cv2.convertScaleAbs(sobelxy)

cv_show(sobelxy,‘sobelxy’)



图像梯度-Scharr算子

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A2AjlN2b-1610550051663)(scharr.png)]



图像梯度-laplacian算子

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IkHah5LG-1610550051666)(l.png)]

#不同算子的差异

img = cv2.imread(‘lena.jpg’,cv2.IMREAD_GRAYSCALE)

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)

sobelx = cv2.convertScaleAbs(sobelx)

sobely = cv2.convertScaleAbs(sobely)

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)

scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)

scharry = cv2.Scharr(img,cv2.CV_64F,0,1)

scharrx = cv2.convertScaleAbs(scharrx)

scharry = cv2.convertScaleAbs(scharry)

scharrxy = cv2.addWeighted(scharrx,0.5,scharry,0.5,0)

laplacian = cv2.Laplacian(img,cv2.CV_64F)

laplacian = cv2.convertScaleAbs(laplacian)

res = np.hstack((sobelxy,scharrxy,laplacian))

cv_show(res,‘res’)

img = cv2.imread(‘lena.jpg’,cv2.IMREAD_GRAYSCALE)

cv_show(img,‘img’)



Canny边缘检测

    1.    使用高斯滤波器,以平滑图像,滤除噪声。
      
    1.    计算图像中每个像素点的梯度强度和方向。
      
    1.    应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
      
    1.    应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
      
    1.    通过抑制孤立的弱边缘最终完成边缘检测。
      



1:高斯滤波器

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-E073sOxf-1610550051669)(canny_1.png)]



2:梯度和方向

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-khFqjaT5-1610550051672)(canny_2.png)]



3:非极大值抑制

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZWDrxbmq-1610550051673)(canny_3.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AqkB70zN-1610550051675)(canny_6.png)]



4:双阈值检测

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PaiU7eAc-1610550051677)(canny_5.png)]

img=cv2.imread(“lena.jpg”,cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,80,150)

v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))

cv_show(res,‘res’)

img=cv2.imread(“car.png”,cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,120,250)

v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))

cv_show(res,‘res’)



图像金字塔

  • 高斯金字塔
  • 拉普拉斯金字塔

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YgRXm4N1-1610550051679)(Pyramid_1.png)]



高斯金字塔:向下采样方法(缩小)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1N84eaZb-1610550051680)(Pyramid_2.png)]



高斯金字塔:向上采样方法(放大)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wBpncUf9-1610550051682)(Pyramid_3.png)]

img=cv2.imread(“AM.png”)

cv_show(img,‘img’)

print (img.shape)

up=cv2.pyrUp(img)

cv_show(up,‘up’)

print (up.shape)

down=cv2.pyrDown(img)

cv_show(down,‘down’)

print (down.shape)

up2=cv2.pyrUp(up)

cv_show(up2,‘up2’)

print (up2.shape)

up=cv2.pyrUp(img)

up_down=cv2.pyrDown(up)

cv_show(up_down,‘up_down’)

cv_show(np.hstack((img,up_down)),‘up_down’)

up=cv2.pyrUp(img)

up_down=cv2.pyrDown(up)

cv_show(img-up_down,‘img-up_down’)



拉普拉斯金字塔

down=cv2.pyrDown(img)

down_up=cv2.pyrUp(down)

l_1=img-down_up

cv_show(l_1,‘l_1’)



图像轮廓



cv2.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。

为了更高的准确率,使用二值图像。

img = cv2.imread(‘contours.png’)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

cv_show(thresh,‘thresh’)

binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

绘制轮廓

cv_show(img,‘img’)

#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度



注意需要copy,要不原图会变。。。

draw_img = img.copy()

res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)

cv_show(res,‘res’)

draw_img = img.copy()

res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2)

cv_show(res,‘res’)



轮廓特征

cnt = contours[0]

#面积

cv2.contourArea(cnt)

#周长,True表示闭合的

cv2.arcLength(cnt,True)



轮廓近似

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0CbKxSaU-1610550051686)(contours3.png)]

img = cv2.imread(‘contours2.png’)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

cnt = contours[0]

draw_img = img.copy()

res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)

cv_show(res,‘res’)

epsilon = 0.15*cv2.arcLength(cnt,True)

approx = cv2.approxPolyDP(cnt,epsilon,True)

draw_img = img.copy()

res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)

cv_show(res,‘res’)

边界矩形

img = cv2.imread(‘contours.png’)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

cnt = contours[0]

x,y,w,h = cv2.boundingRect(cnt)

img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)

cv_show(img,‘img’)

area = cv2.contourArea(cnt)

x, y, w, h = cv2.boundingRect(cnt)

rect_area = w * h

extent = float(area) / rect_area

print (‘轮廓面积与边界矩形比’,extent)

外接圆

(x,y),radius = cv2.minEnclosingCircle(cnt)

center = (int(x),int(y))

radius = int(radius)

img = cv2.circle(img,center,radius,(0,255,0),2)

cv_show(img,‘img’)



傅里叶变换

我们生活在时间的世界中,早上7:00起来吃早饭,8:00去挤地铁,9:00开始上班。。。以时间为参照就是时域分析。

但是在频域中一切都是静止的!



傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界

  • 低频:变化缓慢的灰度分量,例如一片大海



滤波

  • 低通滤波器:只保留低频,会使得图像模糊

  • 高通滤波器:只保留高频,会使得图像细节增强

opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式,得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,通过shift变换

import numpy as np

import cv2

from matplotlib import pyplot as plt

img = cv2.imread(‘lena.jpg’,0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)

dft_shift = np.fft.fftshift(dft)

magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))

plt.subplot(121),plt.imshow(img, cmap = ‘gray’)

plt.title(‘Input Image’), plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = ‘gray’)

plt.title(‘Magnitude Spectrum’), plt.xticks([]), plt.yticks([])

plt.show()

import numpy as np

import cv2

from matplotlib import pyplot as plt

img = cv2.imread(‘lena.jpg’,0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)

dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape

crow, ccol = int(rows/2) , int(cols/2) # 中心位置



低通滤波

mask = np.zeros((rows, cols, 2), np.uint8)

mask[crow-30:crow+30, ccol-30:ccol+30] = 1



IDFT

fshift = dft_shift*mask

f_ishift = np.fft.ifftshift(fshift)

img_back = cv2.idft(f_ishift)

img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = ‘gray’)

plt.title(‘Input Image’), plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(img_back, cmap = ‘gray’)

plt.title(‘Result’), plt.xticks([]), plt.yticks([])

plt.show()

img = cv2.imread(‘lena.jpg’,0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)

dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape

crow, ccol = int(rows/2) , int(cols/2) # 中心位置



高通滤波

mask = np.ones((rows, cols, 2), np.uint8)

mask[crow-30:crow+30, ccol-30:ccol+30] = 0



IDFT

fshift = dft_shift*mask

f_ishift = np.fft.ifftshift(fshift)

img_back = cv2.idft(f_ishift)

img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = ‘gray’)

plt.title(‘Input Image’), plt.xticks([]), plt.yticks([])

plt.subplot(122),plt.imshow(img_back, cmap = ‘gray’)

plt.title(‘Result’), plt.xticks([]), plt.yticks([])

plt.show()

import cv2 #opencv读取的格式是BGR

import numpy as np

import matplotlib.pyplot as plt#Matplotlib是RGB

%matplotlib inline

def cv_show(img,name):

cv2.imshow(name,img)

cv2.waitKey()

cv2.destroyAllWindows()



直方图

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8WERMqab-1610550457630)(hist_1.png)]



cv2.calcHist(images,channels,mask,histSize,ranges)

  • images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
  • channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
  • mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
  • histSize:BIN 的数目。也应用中括号括来
  • ranges: 像素值范围常为 [0256]

img = cv2.imread(‘cat.jpg’,0) #0表示灰度图

hist = cv2.calcHist([img],[0],None,[256],[0,256])

hist.shape

plt.hist(img.ravel(),256);

plt.show()

img = cv2.imread(‘cat.jpg’)

color = (‘b’,‘g’,‘r’)

for i,col in enumerate(color):

histr = cv2.calcHist([img],[i],None,[256],[0,256])

plt.plot(histr,color = col)

plt.xlim([0,256])

mask操作



创建mast

mask = np.zeros(img.shape[:2], np.uint8)

print (mask.shape)

mask[100:300, 100:400] = 255

cv_show(mask,‘mask’)

img = cv2.imread(‘cat.jpg’, 0)

cv_show(img,‘img’)

masked_img = cv2.bitwise_and(img, img, mask=mask)#与操作

cv_show(masked_img,‘masked_img’)

hist_full = cv2.calcHist([img], [0], None, [256], [0, 256])

hist_mask = cv2.calcHist([img], [0], mask, [256], [0, 256])

plt.subplot(221), plt.imshow(img, ‘gray’)

plt.subplot(222), plt.imshow(mask, ‘gray’)

plt.subplot(223), plt.imshow(masked_img, ‘gray’)

plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)

plt.xlim([0, 256])

plt.show()



直方图均衡化

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7aVJNiCC-1610550457634)(hist_2.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pLzMhaNx-1610550457636)(hist_3.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xaj8PRhQ-1610550457639)(hist_4.png)]

img = cv2.imread(‘clahe.jpg’,0) #0表示灰度图 #clahe

plt.hist(img.ravel(),256);

plt.show()

equ = cv2.equalizeHist(img)

plt.hist(equ.ravel(),256)

plt.show()

res = np.hstack((img,equ))

cv_show(res,‘res’)



自适应直方图均衡化

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))

res_clahe = clahe.apply(img)

res = np.hstack((img,equ,res_clahe))

cv_show(res,‘res’)



版权声明:本文为weixin_44116017原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。