环境:Ubuntu18.04,ROS版本:melodic
    
    tf坐标变换包括广播和监听,接下来用一个例子简单介绍tf坐标系的使用
    
   
     文章目录
    
    
    
    一、工作空间
   
    
    
    1.创建一个工作空间
   
    创建的步骤可以看前面的文章,工作空间命名为sor_ws
    
     创建并编译工作空间
    
   
    
    
    2.在src下创建功能包
   
cd ~/sor_ws/src
catkin_create_pkg learning_tf rospy roscpp tf turtlesim
    
    learning_service目录下生成以下文件及文件夹
    
     
   
    
    
    二、tf广播器编写
   
    
    
    1.创建.cpp文件
   
cd ~/sor_ws/src/learning_tf/src
touch turtle_tf_broadcaster.cpp
sudo gedit turtle_tf_broadcaster.cpp
     
   
    
    
    2.tf广播器代码
   
定义tf广播器(transformbroadcaster)
static tf::TransformBroadcaster br;
创建坐标变换值
tf::Transform transform;
transform.setOrigin( tf::Vector3(msg->x, msg->y, 0.0) );
tf::Quaternion q;
q.setRPY(0, 0, msg->theta);
transform.setRotation(q);
发布坐标变换(sendtransform)
br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", turtle_name));
    
    
    
     完整代码如下
    
   
/***********************************************************************
Copyright 2020 GuYueHome (www.guyuehome.com).
***********************************************************************/
/**
 * 该例程产生tf数据,并计算、发布turtle2的速度指令
 */
#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <turtlesim/Pose.h>
std::string turtle_name;
void poseCallback(const turtlesim::PoseConstPtr& msg)
{
	// 创建tf的广播器
	static tf::TransformBroadcaster br;
	// 初始化tf数据
	tf::Transform transform;
	transform.setOrigin( tf::Vector3(msg->x, msg->y, 0.0) );
	tf::Quaternion q;
	q.setRPY(0, 0, msg->theta);
	transform.setRotation(q);
	// 广播world与海龟坐标系之间的tf数据
	br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", turtle_name));
}
int main(int argc, char** argv)
{
    // 初始化ROS节点
	ros::init(argc, argv, "my_tf_broadcaster");
	// 输入参数作为海龟的名字
	if (argc != 2)
	{
		ROS_ERROR("need turtle name as argument"); 
		return -1;
	}
	turtle_name = argv[1];
	// 订阅海龟的位姿话题
	ros::NodeHandle node;
	ros::Subscriber sub = node.subscribe(turtle_name+"/pose", 10, &poseCallback);
    // 循环等待回调函数
	ros::spin();
	return 0;
};
    
    
    三、tf监听器编写
   
    
    
    1.创建.cpp文件
   
cd ~/sor_ws/src/learning_tf/src
touch turtle_tf_listener.cpp
sudo gedit turtle_tf_listener.cpp
     
   
    
    
    2.tf监听器代码
   
定义tf监听器(transformlistener)
tf::TransformListener listener;
查找坐标变换(waitfortransform、lookuptransform)
while (node.ok())
	{
		// 获取turtle1与turtle2坐标系之间的tf数据
		tf::StampedTransform transform;
		try
		{
			listener.waitForTransform("/turtle2", "/turtle1", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/turtle2", "/turtle1", ros::Time(0), transform);
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}
		// 根据turtle1与turtle2坐标系之间的位置关系,发布turtle2的速度控制指令
		geometry_msgs::Twist vel_msg;
		vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
				                        transform.getOrigin().x());
		vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
				                      pow(transform.getOrigin().y(), 2));
		turtle_vel.publish(vel_msg);
		rate.sleep();
	}
    
    
    
     完整代码如下
    
   
/***********************************************************************
Copyright 2020 GuYueHome (www.guyuehome.com).
***********************************************************************/
/**
 * 该例程监听tf数据,并计算、发布turtle2的速度指令
 */
#include <ros/ros.h>
#include <tf/transform_listener.h>
#include <geometry_msgs/Twist.h>
#include <turtlesim/Spawn.h>
int main(int argc, char** argv)
{
	// 初始化ROS节点
	ros::init(argc, argv, "my_tf_listener");
    // 创建节点句柄
	ros::NodeHandle node;
	// 请求产生turtle2
	ros::service::waitForService("/spawn");
	ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
	turtlesim::Spawn srv;
	add_turtle.call(srv);
	// 创建发布turtle2速度控制指令的发布者
	ros::Publisher turtle_vel = node.advertise<geometry_msgs::Twist>("/turtle2/cmd_vel", 10);
	// 创建tf的监听器
	tf::TransformListener listener;
	ros::Rate rate(10.0);
	while (node.ok())
	{
		// 获取turtle1与turtle2坐标系之间的tf数据
		tf::StampedTransform transform;
		try
		{
			listener.waitForTransform("/turtle2", "/turtle1", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/turtle2", "/turtle1", ros::Time(0), transform);
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}
		// 根据turtle1与turtle2坐标系之间的位置关系,发布turtle2的速度控制指令
		geometry_msgs::Twist vel_msg;
		vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
				                        transform.getOrigin().x());
		vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
				                      pow(transform.getOrigin().y(), 2));
		turtle_vel.publish(vel_msg);
		rate.sleep();
	}
	return 0;
};
    
    
    3.配置编译规则
   
在learning_tf文件夹下双击打开CMakeLists.txt文件
add_executable(turtle_tf_broadcaster src/turtle_tf_broadcaster.cpp)
target_link_libraries(turtle_tf_broadcaster ${catkin_LIBRARIES})
add_executable(turtle_tf_listener src/turtle_tf_listener.cpp)
target_link_libraries(turtle_tf_listener ${catkin_LIBRARIES})
     
   
    
    
    4.编译
   
cd ~/sor_ws
catkin_make
    
    
    
    
    编译完成
   
    
    
    四、运行
   
    打开新终端,输入roscore
    
    
    
    再打开一个新终端,启动可视化海龟界面
   
rosrun turtlesim turtlesim_node
    
    
    发布海龟1与world的坐标系关系
   
source ~/sor_ws/devel/setup.bash
rosrun learning_tf turtle_tf_broadcaster __name:=turtle1_tf_broadcaster /turtle1 
    
    
    发布海龟2与world的坐标系关系
   
source ~/sor_ws/devel/setup.bash
rosrun learning_tf turtle_tf_broadcaster __name:=turtle2_tf_broadcaster /turtle2 
     
   
创建海龟2发布速度指令然后让它跟着海龟1运动
source ~/sor_ws/devel/setup.bash
rosrun learning_tf turtle_tf_listener 
    
    
    运行指令,用键盘上的上下左右按键来控制海龟1运动,海龟2会跟随海龟1运动
   
rosrun turtlesim turtle_teleop_key
     
   
    
    
    总结
   
    本文主要是用C++编程利用tf坐标系简单实现了两个海龟的跟随实验。
    
    文章仅供学习使用,学习资料来自:
    
     【古月居】古月·ROS入门21讲
    
   
 
