学习率预热(transformers.get_linear_schedule_with_warmup)

  • Post author:
  • Post category:其他



学习率预热

  • 在预热期间,学习率从0线性增加到优化器中的初始lr。

  • 在预热阶段之后创建一个schedule,使其学习率从优化器中的初始lr线性降低到0


Parameters


  • optimizer (Optimizer)

    – The optimizer for which to schedule the learning rate.


  • num_warmup_steps (int)

    – The number of steps for the warmup phase.


  • num_training_steps (int)

    – The total number of training steps.


  • last_epoch (int, optional, defaults to -1)

    – The index of the last epoch when resuming training.


Returns


  • torch.optim.lr_scheduler.LambdaLR

    with the appropriate schedule.
# training steps 的数量: [number of batches] x [number of epochs].
total_steps = len(train_dataloader) * epochs

# 设计 learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 50, 
                                            num_training_steps = total_steps)



版权声明:本文为Xiao_CangTian原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。