统计工具箱包含5个与隐马尔可夫模型相关的函数:
hmmgenerate 从一个马尔可夫模型产生一个状态序列和输出序列;
hmmestimate 计算转移和输出的极大似然估计;
hmmtrain 从一个输出序列计算转移和输出概率的极大似然估计;
hmmviterbi 计算一个隐马尔可夫模型最可能的状态变化过程;
hmmdecode 计算一个给定输出序列的后验状态概率。
下面部分介绍如何使用这些函数来分析隐马尔可夫模型。
1. 产生一个测试序列
下面代码产生上面简介中模型的转移和输出矩阵:
TRANS = [.9 .1; .05 .95;];
EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;…
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];
要从模型产生一个随机的状态序列和输出序列,使用hmmgenerate:
[seq,states] = hmmgenerate(1000,TRANS,EMIS);
输出中,seq是输出序列,states是状态序列。hmmgenerate在第0步从状态1开始,在第一步转移到状态i1
,并返回i1作为状态的第一个入口。
2. 估计状态序列
给定了转移和输出矩阵TRANS和EMIS,函数hmmviterbi使用Viterbi算法计算模型给定输出序列seq最有可能
通过的状态序列:
likelystates = hmmviterbi(seq, TRANS, EMIS);
likelystates是和seq一样长的序列。计算hmmvertibi